Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Топ:
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Гетероскедастичність призводить до неефективності оцінок, незважаючи на їх незміщеність. Це може призвести до необґрунтованих висновків щодо якості моделі. Тому при встановленні гетероскедастичності виникає необхідність перетворення моделі з метою усунення даного недоліку. Вид перетворення залежить від того, відомі чи ні дисперсії відхилень. Метод зважених найменших квадратів (ВНК)
Даний метод застосовується при відомих для кожного спостереження значеннях . У цьому випадку можна усунути гетероскедастичність, розділивши кожне значення, що спостерігається на відповідне йому значення дисперсії. У цьому суть методу зважених найменших квадратів.
Для простоти викладу опишемо ВНК на прикладі парної регресії:
Розділимо обидві частини (7.5) на
, одержимо:
(6) Поклавши рівним
одержимо рівняння регресії без вільного члена, але з додаткової пояснюючою змінної і з “перетвореним” відхиленням :
Для застосування ВНК необхідно знати фактичні значення дисперсій відхилень. На практиці такі значення відомі вкрай рідко. Отже, щоб застосувати ВНК, необхідно зробити припущення про значення .
Наприклад, можна припустити, що дисперсії
відхилень
пропорційні значенням
(рис. 9) чи значенням
(рис. 10).
Методи усунення автокореляції. Авторегресійне перетворення.
Серед основних методів усунення автокореляції можна виділити:
1. Правильну специфікацію моделі (залучення значущих факторів або зміна форми залежності). Основною причиною наявності випадкової величини в узагальненій кореляційно-регресійній моделі є неможливість урахувати всі значущі фактори і взаємозв'язки,що зумовлюють певне значення результуючої змінної. Потрібно спробувати ідентифікувати факторну ознаку, яку не враховано в КРМ і врахувати її. Також можна спробувати змінити форму залежності( наприклад, лінійну на нелінійну).
2. Використання AR(1)-моделі (авторегресійної моделі Маркова 1-го порядку). Якщо віс доступні процедури зміни специфікації моделі вичерпані,а автокореляція наявна,то можна припустити, що вона обумовлена внутрішніми властивостями певних значень випадкових відхилень . У цьому разі можна скористатися авто регресійним перетворенням. У лінійній кореляційно-регресійній моделі або в моделях, що зводяться до лінійної, найдоцільнішим і простим перетворенням є авто регресійна модель Маркова першого порядку AR(1).
|
|
|
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
© cyberpedia.su 2017-2026 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!