
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Топ:
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Нелінійні моделі та їх лінеаризація. Приклади використання в економіці.
Найбільш популярною моделлю в економіці є лінійна регресія. Проте не всі економічні процеси можна нею моделювати. Тому на практиці використовуються складніші моделі з нелінійною залежністю між показником у та фактором х. За методикою оцінок параметрів парні нелінійні регресії розглядаються двох видів: 1) нелінійні за факторами, але лінійні за невідомими параметрами, які підлягають оцінці; 2) нелінійні за факторами і параметрами. Регресії, нелінійні за факторами, але лінійні за оцінюваними параметрами, називаються квазілінійними.
Парну квазілінійну регресію можна записати в загальному вигляді: Заміною величин
нелінійна парна регресія приводиться до лінійної парної регресії:
Формули для оцінок параметрів набувають вигляду
,
Коефіцієнт еластичності для парної квазілінійної регресії оцінюється за формулою Для оцінки коефіцієнта еластичності нелінійної регресії в загальному використовується формула:
, де
- частинна похідна функції у за змінною х.
В регресіях нелінійних за факторами та параметрами логарифмують праву та ліву частину рівняння і проводять заміну змінних. Таким чином нелінійна регресія зводиться до лінійного виду. Параметри лінійної моделі оцінюють за відомими формулами використовуючи в якості вихідних даних значення нових змінних. Для оцінки адекватності нелінійної парної регресії спостережуваним даним можна використовувати критерій Фішера. Перевірка виконується за таким же алгоритмом, що й для лінійної парної регресії.
Довірчі межі прогнозу для квазілінійної парної регресії оцінюються за тими ж формулами, що й для лінійної парної регресії, лише замість х розглядають х/ . Інтервальний прогноз індивідуального значення при заданому рівні значимості α = 0,05 для yn+1 знаходять за формулою:
Інтервал довіри для математичного сподівання yn+1 :
У тих випадках, коли нелінійна регресія перетворюється в лінійну шляхом логарифмування і заміни змінних, довірча інтервальний прогноз знаходять для відповідної лінійної регресії, а потім, використовуючи зворотні перетворення для меж інтервалів довіри прогнозу лінійної регресії, знаходять межі інтервалів довіри прогнозу нелінійної регресії.
|
|
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!