Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Сформулюйте означення функції регресії.

2024-02-15 56
Сформулюйте означення функції регресії. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Регресі́йний ана́ліз — розділ математичної статистики, присвячений методам аналізу залежності однієї величини від іншої. На відміну від кореляційного аналізу не з'ясовує чи істотний зв'язок, а займається пошуком моделі цього зв'язку, вираженої у функції регресії.

Регресійний аналіз використовується в тому випадку, якщо відношення між змінними можуть бути виражені кількісно у виді деякої комбінації цих змінних. Отримана комбінація використовується для передбачення значення, що може приймати цільова (залежна) змінна, яка обчислюється на заданому наборі значень вхідних (незалежних) змінних. У найпростішому випадку для цього використовуються стандартні статистичні методи, такі як лінійна регресія. На жаль, більшість реальних моделей не вкладаються в рамки лінійної регресії. Наприклад, розміри продажів чи фондові ціни дуже складні для передбачення, оскільки можуть залежати від комплексу взаємозв'язків множин змінних. Таким чином, необхідні комплексні методи для передбачення майбутніх значень.

Мета регресійного аналізу

Визначення ступеня детермінованості варіації критеріальної (залежної) змінної предикторами (незалежними змінними).

Прогнозування значення залежної змінної за допомогою незалежної.

Визначення внеску окремих незалежних змінних у варіацію залежної.

Регресійний аналіз не можна використовувати для визначення наявності зв'язку між змінними, оскільки наявність такого зв'язку і є передумова для застосування аналізу.

 

Теоретичне, емпіричне рівняння багатофакторної регресії.

На будь-який економічний показник найчастіше впливає не один, а декілька факторів. У цьому випадку замість парної регресії розглядається багатофакторна регресія:

                                                                     (1)

Рівняння багатофакторної регресії може бути представлене у вигляді:

                                                                                                          (2)

де  – вектор незалежних (пояснюючих) змінних;

   – вектор невідомих параметрів;

                                 – випадкове відхилення;

                                 – залежна (пояснювана) змінна.

Розглянемо найбільш просту з моделей багатофакторної регресії – модель багатофакторної лінійної регресії.

Теоретичне лінійне рівняння багатофакторної регресії має вигляд:

        (3)

Фактичні значення залежної змінної знаходяться за формулою:

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.