Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Интересное:
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Дисциплины:
2024-02-15 | 58 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Поряд з коефіцієнтом кореляції використовується ще один критерій, за допомогою якого також вимірюється щільність зв'язку між двома або більше показниками та перевіряється адекватність (відповідність) побудованої регресійної моделі реальній дійсності. Тобто дається відповідь на запитання, чи дійсно зміна значення у лінійно залежить саме від зміни значення х, а не відбувається під впливом різних випадкових факторів. Таким критерієм є коефіцієнт детермінації.
Щоб пояснити, що саме являє собою коефіцієнт детермінації та як він пов'язаний з коефіцієнтом кореляції, розглянемо питання про декомпозицію дисперсій.
Розглянемо на рисункі, як розбиваються на дві частини відхилення фактичних (емпіричних) значень залежної змінної від значень, які знаходяться на регресійній прямій (теоретичних або розрахункових ):
Як видно із рисунка: . Звідси дістаємо
. (*)
В статистиці різницю прийнято називати загальним відхиленням. Різницю називають відхиленням, яке можна пояснити, виходячи із регресійної прямої. Різницю називають відхиленням, яке не можна пояснити, виходячи з регресійної прямої, або непояснюваним відхиленням. Піднесемо обидві частини (*) до квадрату і підсумуємо по. Враховуючи, що сума похибок дорівнює нулю, дістанемо: , (**)
Поділивши обидві частини (*) на , отримаємо так зване «правило складання дисперсій»:
,(***) Таким чином, ми розклали загальну дисперсію на дві частини: дисперсію, що пояснює регресію, та дисперсію помилок (або дисперсію випадкової величини). Поділимо обидві частини (***) на і отримаємо:
Як видно, перше відношення у правій частині є пропорцією дисперсії, що пояснює регресію, у загальній дисперсії. Друге відношення є пропорцією дисперсії помилок у загальній дисперсії, тобто є частиною дисперсії, яку не можна пояснити через регресійний зв’язок.
Частина дисперсії, що пояснює регресію, називається коефіцієнтом детермінації і позначається . Коефіцієнт детермінації використовується як критерій адекватності моделі, оскільки є мірою пояснювальної сили незалежної змінної . Коефіцієнт детермінації можна записати в одному із двох еквівалентних виразів:
або . Очевидно, що . Враховуючи, що коефіцієнт кореляції , неважко встановити наступний зв’язок між коефіцієнтами детермінації та кореляції (для лінійної регресії):
Отже коефіцієнт детермінації дорівнює квадрату коефіцієнта кореляції.
18. Зв’язок між коефіцієнтом кореляції та кутовим коефіцієнтом b1.
|
Який зв’язок існує між коефіцієнтом кореляції і нахилом прямої регресії b1. Нагадаємо, що:
Так як значення додатні, то знак коефіцієнта кореляції завжди збігається із знаком параметра b1. Знак коефіцієнта кореляції співпадає із знаком коефіцієнта b1 в рівнянні регресії. Коефіцієнт кореляції знаходиться в межах від 0 до ±1. Якщо коефіцієнт кореляції дорівнює нулю, то зв'язок відсутній, а якщо одиниці, то зв'язок функціональний. Знак при коефіцієнті кореляції вказує на напрям зв'язку ("+" - прямий, "-" - обернений). Знак коефіцієнта показує "напрямок" зв'язку. Додатний коефіцієнт кореляції (r > 0) свідчить про "прямий" зв'язок між ознаками (тобто такий, коли збільшення значення однієї ознаки збільшує значення іншої ознаки), а від'ємний (г < 0) — про "зворотний" зв'язок (такий, коли зростання однієї ознаки веде до зменшення іншої ознаки). Чим ближче коефіцієнт кореляції до одиниці, тим зв'язок між ознаками тісніший.
|
|
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!