Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Визначення коефіцієнта детермінації для багатофакторної лінійної регресії, оцінка його статистичної значущості.

2024-02-15 64
Визначення коефіцієнта детермінації для багатофакторної лінійної регресії, оцінка його статистичної значущості. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Для перевірки загальної якості рівняння багатофакторної регресії застосовують:

1. Коефіцієнт детермінації:

(12)

2. Скоригований коефіцієнт детермінації:

                                           (13)

                                             (14)

  З (14) випливає, що  для .  може бути і від’ємним.

3. Індекс кореляції (множинний коефіцієнт кореляції) :

,  Î [0, 1].                                               (15)

 

Для перевірки статистичної значущості коефіцієнта детермінації застосовують F-критерій Фішера. Аналіз статистичної значущості коефіцієнта детермінації проводять за наступними етапами:

1) розраховують F-статистику:

,                                           (16)

де  – кількість незалежних змінних;

2) з таблиць критичних точок розподілу Фішера знаходять ;

3) якщо , то  є статистично значущим, рівняння якісно описує зв’язок між залежною і незалежними змінними.

Визначення коефіцієнта детермінації для парної лінійної регресії.

Функціональна залежність умовного математичного сподівання  від  називається функцієюрегресії на : (1)                                             

де  – значення ВВ  в -му спостереженні, .

Парна лінійна регресія являє собою лінійну функцію між умовним математичним сподіванням залежної змінної  і однією незалежною змінною : .(2)Співвідношення (2) називається теоретичним лінійним рівнянням регресії. Для відображення того факту, що кожне фактичне значення залежної змінної ( ) відхиляється від відповідного умовного математичного сподівання ( ), необхідно ввести в співвідношення випадковий доданок : , (3)                                 

де ,  – теоретичні параметри (теоретичні коефіцієнти) регресії;  – випадкові відхилення.Співвідношення (3) називається теоретичною лінійною регресійною моделлю. За вибіркою можна побудувати емпіричне рівняння регресії: ,                                                             (4)

де  – оцінка умовного математичного сподівання ;

,  – оцінки невідомих параметрів  (емпіричні коефіцієнти регресії).

Фактичні значення залежної змінної ( ) розраховуються за формулою:

,                                                      (5)

де  – оцінка теоретичного випадкового відхилення .


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.