
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Топ:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Интересное:
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
На будь-який економічний показник найчастіше впливає не один, а декілька факторів. У цьому випадку замість парної регресії розглядається багатофакторна регресія:
(1)
Рівняння багатофакторної регресії може бути представлене у вигляді:
(2)
де – вектор незалежних (пояснюючих) змінних;
– вектор невідомих параметрів;
– випадкове відхилення;
– залежна (пояснювана) змінна.
Розглянемо найбільш просту з моделей багатофакторної регресії – модель багатофакторної лінійної регресії.
Теоретичне лінійне рівняння багатофакторної регресії має вигляд:
(3)
Фактичні значення залежної змінної знаходяться за формулою:
(4)
Сформулюйте означення парної лінійної регресії.
Функціональна залежність умовного математичного сподівання від
називається функцією регресії
на
:
(1)
де – значення ВВ
в
-му спостереженні,
.
Парна лінійна регресія являє собою лінійну функцію між умовним математичним сподіванням залежної змінної
і однією незалежною змінною
:
. (2)
Співвідношення (2) називається теоретичним лінійним рівнянням регресії. Для відображення того факту, що кожне фактичне значення залежної змінної ( ) відхиляється від відповідного умовного математичного сподівання (
), необхідно ввести в співвідношення (2) випадковий доданок
:
, (3)
де ,
– теоретичні параметри (теоретичні коефіцієнти) регресії;
– випадкові відхилення.
Співвідношення (3) називається теоретичною лінійною регресійною моделлю. За вибіркою можна побудувати емпіричне рівняння регресії:
, (4)
де – оцінка умовного математичного сподівання
;
,
– оцінки невідомих параметрів
(емпіричні коефіцієнти регресії).
Фактичні значення залежної змінної ( ) розраховуються за формулою:
, (5)
де – оцінка теоретичного випадкового відхилення
.
|
|
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!