Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Топ:
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Интересное:
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Дисциплины:
2024-02-15 | 59 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Можна показати, що властивості оцінок коефіцієнтів регресії ( ), а також і якість побудованої регресії істотно залежать від властивостей випадкового відхилення ( ). Доведено, що для одержання за МНК найкращих результатів необхідно, щоб виконувався ряд передумов щодо випадкового відхилення.
Передумови МНК (умови Гаусса – Маркова):
1°. Математичне сподівання випадкового відхилення дорівнює нулю: для всіх спостережень.
2°. Дисперсія випадкових відхилень постійна: для будь-яких спостережень і .
Здійсненність даної передумови називається гомоскедастичністю, нездійсненність – гетероскедастичністю.
3°. Випадкові відхилення і є незалежними ( ):
(3)
У випадку, якщо дана умова виконується, то говорять про відсутність автокореляції.
4°. Випадкове відхилення незалежне від пояснюючих змінних:
(4)
5°. Модель є лінійною щодо параметрів.
Теорема Гаусса-Маркова. Якщо передумови 1° – 5° виконані, то оцінки, отримані за МНК, мають наступні властивості:
1. Оцінки є незміщеними, тобто , .
2. Оцінки спроможні (обґрунтовані), тобто дисперсія оцінок параметрів при зростанні числа спостережень прагне до нуля: , .
3. Оцінки ефективні, тобто вони мають найменшу дисперсію в порівнянні з будь-якими іншими оцінками даних параметрів, лінійними щодо величин .
В англомовній літературі такі оцінки називаються BLUE – найкращі лінійні незміщені оцінки. Якщо передумови 2° і 3° порушені, то властивості незміщеності і спроможності зберігаються, а властивість ефективності – ні.
Поняття гетероскедастичності та її наслідки.
Однією з таких передумов МНК є умова сталості дисперсій випадкових відхилень :
для будь-яких спостережень і .
Якщо дана передумова виконується, то має місце гомоскедастичністъ (сталість дисперсії відхилень). Невиконання даної передумови називається гетероскедастичністю (дисперсія відхилень не є сталою). Наведемо приклади гомо- і гетероскедастичності на рис. 1, 2 .
Рис. 1 Гомоскедастичність Рис. 2 Гетероскедастичність
Поняття мультиколінеарності та її наслідки .
Мультиколінеарність означає існування тісної лінійної залежності, або сильної кореляції, між двома чи більше пояснюючими змінними.
Наслідки мультиколінеарності:
1) великі дисперсії (стандартні помилки) оцінок теоретичних параметрів;
2) зменшуються t - статистики коефіцієнтів, що може привести до невірного висновку про вплив відповідної пояснюючої змінної на залежну змінну;
|
3) оцінки теоретичних параметрів і їхні стандартні помилки стають дуже чуттєвими до найменшої зміни даних, тобто вони стають нестійкими;
4) можливе одержання невірного знака коефіцієнта регресії.
Порівняння двох регресійних моделей. Тест Чоу.
Природа Dummy-змінних.
Економічні явища, які досліджує економетрія, дуже різноманітні. На залежну змінну поряд із кількісними факторами впливають і якісні: стать, релігія, страйки, війни, зміни в економічній політиці тощо.
Потрібно вміти вводити якісні дані в багатофакторні регресійні моделі, оцінювати параметри і аналізувати отримані результати.
Якісні змінні часто є бінарними: вони отримують значення “1” при наявності певної якості і “0” при її відcутності. Такі змінні називаються dummy-змінними. Пара (0,1) може легко трансформуватись у будь-яку іншу пару лінійним перетворенням , де а та b –конмтанти, а z=1 або нулю. Наприклад, коли z=1, y=a+b, аколи z=0, y=a.
Dummy-змінні можуть використовуватись у регресійних моделях поряд з кількісними змінними, а можуть утворювати регресійні моделі, в яких усі фактори є dummy-змінними (АОV – моделі).
Розглянемо особливості, які виникають при введенні dummy-змінних.
По-перше, dummy-змінні відокремлюють різні класи або різні категорії.
По-друге, під час інтерпретації результатів моделей, які використовують dummy-змінні, важливо знати, які саме категорії позначались через 1, а які через 0.
По-третє, клас, або категорія, позначена 0 (нулем), часто розглядається як базова категорія. Вона є базовою в тому розумінні, що порівняння робиться саме на основі цієї категорії.
|
|
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!