
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Топ:
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Интересное:
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Нехай параметри моделі , розраховані за даними вибірки, є випадковими величинами. Їх математичні сподівання у випадку виконання передумов про відхилення ei дорівнюють відповідно
. Виберемо для перевірки деякий параметр
. Далі виконаємо такі дії.
Крок 1. Сформулюємо дві гіпотези: H0: і H1:
.
Крок 2. Розрахуємо t-статистику: .
Вибіркову дисперсію параметра
обчислимо за формулою
де – діагональний елемент матриці
, що відповідає змінній
;
– оцінка дисперсії залишків.
Крок 3. Порівняємо розрахункове значення з табличним значенням
t-статистики Стьюдента
.
Нагадаємо, що рівень статистичної значущості є ймовірністю похибки, пов'язаної з поширенням спостережуваного результату на всю генеральну сукупність. Кількість степенів вільності n–k–1 – це кількість незалежних параметрів, необхідних для визначення характеристики.
Крок 4. Якщо розрахункове значення статистики більше табличного
( ), то відхилимо нульову гіпотезу і з вибраною ймовірністю стверджуватимемо, що коефіцієнт регресії
статистично значущий (тобто в генеральній сукупності він відмінний від нуля з вибраною ймовірністю). Отже, факторна змінна
істотно впливає на результативний показник.
Якщо параметр статистично незначущий (статистично близький до нуля), це означає, що чинник
не робить серйозного впливу на величину залежної змінної. У цьому випадку доцільно розглянути питання про виключення змінної
з рівняння. Винятком є випадок, коли за незначущого коефіцієнта залежність між Xj і Y існує, але нелінійна. При цьому треба змінити специфікацію моделі (надати їй іншої аналітичної форми).
Для статистично значущих параметрів можна побудувати довірчий інтервал, що показує з імовірністю можливий інтервал зміни істинних параметрів моделі
:
Оцінка точності моделі
Аналогічно до випадку парної регресії для оцінки точності можна розглядати величину відносної похибки апроксимації в i -му спостереженні:
,
.
Для судження про точність моделі визначають середню відносну похибку апроксимації:
.
Похибка, менша 7–10%, свідчить про якісний підбір моделі до початкових даних (висока точність). У разі похибки, більшої 15%, слід вибрати інший тип рівняння моделі.
|
|
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!