
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Топ:
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Интересное:
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
(1) ОСЛОДУ
матрица непрерывна на
функций (коэффициенты системы). Напомним, что в ЛП столбцов функций (высоты h) столбцы
называется ЛЗ, если
нетривиальный набор чисел
(2)
. Если тождество (2) выполняется только при
, то система
ЛНЗ
Свойства решений ОСЛОДУ
1) (Тривиальность) ОСЛОДУ (1) всегда обладает решением Док-во: очевидно
2) (Линейность) Если некоторые решения (1), то
чисел
также является решением (1)
Док-во: Введем в ЛП столбцов функций оператор L: . Сейчас доказано, что L является линейным оператором и что любая ЛК решения также является решением.
Замеч. Из 1) и 2) следует, что совокупность всевозможных решений ОСЛОДУ (1) образует ЛП, которое обозначим
3) (О нуле решения) Если решение (1) или (3) с непрерывными коэффициентами
Док-во: Рассмотрим ЗК для (1) : , но эта ЗК также обладает решением
По ТСЕ получаем
5) (О линейной независимости)
ОСЛОДУ (1) (или (3)) с непрерывными коэффициентами обладает n ЛНЗ решениями
Док-во: Рассмотрим набор столбцов : ,
и рассмотрим n штук ЗК :
ОСЛОДУ
(3)
Опр. Любой базис в назовем фундаментальной системой решений (ФСР) : ОСЛОДУ (1) (или(3)). Т.е. ФСР это упорядоченный набор из n ЛНЗ решений ОСЛОДУ (и всякое решение может быть передано как ЛК элементов этого набора)
6) (Об общем решении ОСЛОДУ)
назовем ФСР ОСЛОДУ,
произвольные постоянные
Док-во: Поскольку
базис, то любое решение является ЛК
Из свойства линейности любая ЛК
является решением.
|
|
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!