История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Техника безопасности при работе на пароконвектомате: К обслуживанию пароконвектомата допускаются лица, прошедшие технический минимум по эксплуатации оборудования...
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Интересное:
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Ставится задача нахождения экстремума функционала
непрерывна с элементами до 2-го порядка включительно
2)
, тогда
является решением уравнения Эйлера для функционала (1) :
, удовлетворяющим условиям (2), (3) и кроме того, на правом конце для него выполняется условие транверсальности : 
Пример 1. Найти условие трансверсальности для функционала

Решение. Пусть левый конец экстремали закреплен в точке
, а правый конец
может перемещаться по кривой
. Тогда получим
. Отсюда в силу условия
, получаем
. Геометрически условие(6) означает, что экстремали
должны пересекать кривую
, по которой скользит граничная точка
по углом
.
В самом деле, соотношение (6) можно представить так: положим, что касательная к экстремали в точке
, лежащей на кривой
, пересекает ось Ox под углом
а касательная к заданной кривой
под углом
. Тогда
и левая часть формулы (6) дает
, но
, поэтому
, откуда
, откуда
, что и требовалось показать.
Пример 2.Найти минимальное расстояние между параболой
и прямой
условие трансверсальности приобретает следующий вид :
. Теперь используем граничные условия 
|
|
|
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
© cyberpedia.su 2017-2026 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!