
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
А) Простейшее уравнение n -го порядка
, где
. Проинтегрировав это уравнение по x
Далее
Через некоторое количество шагов
Док-во: Докажем (11) методом математической индукции.
БАЗА. (верно)
ШАГ. Пусть утверждение верно для , т.е.
.
Тогда , т.е. формула верна и для
утверждение верно.
Таким образом, простейшее уравнение n-го порядка всегда интегрируемо в квадратурах имеет вид (11) #
Теперь докажем, что
Док-во: Применим метод ММИ. БАЗА . Допустим, что решение
. Тогда полученный промежуточный интеграл
б) . Если
однородное, то аргумент
.
В этом случае
БАЗА для верно(см.выше)
ШАГ индукции. Допустим, что утверждение верно для , докажем что оно также верно для
верно , то есть утверждение справедливо
можно свести к нормальной системе следующим образом:
Пусть . Тогда частное решение (4) это вектор столбец
(или вектор строка
1)
2) Подразумевается, что
является внутренней точкой
Теор.(ТСЕ)
Пусть внутренняя точка
и в некоторой
выполняется, что
1)
2) Тогда
решение ЗК (5)
Замеч. Если решение ЗК (5) на
, а
решение ЗК (5) на некотором D, то
на
Линейные нормальные системы.
Рассмотрим (1) Будем считать, что
определены и непрерывны на
Опр. (1) называется линейной нормальной(СЛОДУ) системой (ОДУ 1-го порядка) (сама система имеет порядок n)
Введя обозначение перепишем (1) в виде
Теор.(ТСЕ для СЛОДУ)
Если то на всем
при любом наборе начальных данных
решение ЗК (3) на всем
Без доказательства
|
|
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!