
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Интересное:
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
. Тогда
Напомним, что
В случае произвольной ищем
методом вариации произвольных постоянных. Однако в случае специального вида
удобнее применять метод неопределенных коэффициентов
Теор. (принцип суперпозиции)
Если является решением уравнения
, то
является решением уравнения
Док-во:
#
Пусть многочлен степени
с определенными коэффициентами,
произвольная(комплексная)
В силу принципа суперпозиции рассмотрим поиск для
Возможны 2 случая :
1) нерезонансный случай
2) резонансный случай
Резонансный случай.
Пусть корень характеристического уравнения кратности k :
определена в
начальные условия
ЗК. Найти интегральную кривую уравнения (1) проходящую через найти решение (1), удовлетворяющее н.у. (2))
Теор. Пусть . Проинтегрируем это тождество от
до
причем
является решением ЗК (1), (2)##
3) (Построение функциональной последовательности) Строим функциональную последовательность следующим образом. Везде считаем, что
4) (Принадлежность П)
Покажем, что при выполняется, что
т.е.
##
……
##
5) (Абсолютная и равномерная сходимость функциональной последовательности)
Покажем, что сходится абсолютно и равномерно на
## Очевидно Таким образом, сходимость последовательности
эквивалента сходимости функционального ряда
(т.к.
Рассмотрим . Тогда
……
Тогда Числовой ряд
Сходится по признаку Даламбера
мажорируется сход числовым рядом
сходится абсолютно и равномерно на
по правилу Вейерштрассе.
сумма ряда.
причем
непрерывна при
в случае равномерной сходимости.
Замеч. в силу теоремы о предельном преходе в неравенствах
6) (Равномерная сходимость )
Покажем, что
## критерий сходимости функциональной последовательности. Рассмотрим
##
7) (Решение интегрального уравнения)
Покажем, что является решением интегрального уравнения (4)
## (из (5))
в силу равномерной сходимости
Но поскольку интегрируемое уравнение (4) эквивалентно ЗК (1), (2) то
и является решенной ЗК ##
Таким образом доказано, что решение ЗК
Доказательство конструктивное. Указан метод построения решения. (Метод последовательного приближения #
|
|
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!