Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Топ:
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Техника безопасности при работе на пароконвектомате: К обслуживанию пароконвектомата допускаются лица, прошедшие технический минимум по эксплуатации оборудования...
Интересное:
Средства для ингаляционного наркоза: Наркоз наступает в результате вдыхания (ингаляции) средств, которое осуществляют или с помощью маски...
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Дисциплины:
2024-02-15 | 50 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Флуктуационная помеха – множество случайных последовательностей импульсов, которые накладываются друг на друга. Флуктуационная (Гауссовская) помеха характеризуется нормальным законом распределения вероятностей амплитудных значений.
Это выражение справедливо для одномерной плотности. -плотность – плотность вероятности.
- мощность флуктуационной помехи
- среднее значение или постоянная составляющая;
- вероятность того, что амплитудное значение флуктуационной помехи попадет в интервал ;
– вероятность того, что все значения флуктуационной помехи
будут лежать левее ;
- этот интеграл вычисляется через табулированную функцию Лапласа ,
Часто возникает задача вычисления попадания флуктуационной помехи в интервал от до , вероятность попадания которой равна:
Существует несколько видов функции Лапласа: которая задается от - до и от до .
Т.к. нормальный закон распределения известен, достаточно знать параметры: среднее значение (постоянная составляющая) и среднеквадратическое отклонение (мощность помехи)
Характеристический спектр флуктуационной помехи должен быть нормально распределен.
– мощность помехи на 1 Гц частоты.
Если спектр задан на бесконечном интервале, то помеха называется белым шумом, т.е. это широкополосный шум.
Если ширина шума , то можно принять помеху за белый шум.
Интервал корреляции , если это идеальный белый шум, т.е. все отдельные значения этой функции независимы друг от друга, т.е. некоррелированы, и такую функцию можно назвать функцией Дирака.
Если , то помеха называется окрашенным шумом.
Степень случайности значений функции помехи можно определить через интервал корреляции – это интервал, на который отстают две помехи. Чем больше , тем процесс более случайный.
ФУНКЦИЯ КОРЕЛЛЯЦИИ
Одной из важнейших характеристик случайного процесса является функция корреляции (иначе - функция автокорреляции), которая учитывает статистическую зависимость между значениями случайного процесса в различные моменты времени. ФК определяется как математическое ожидание от произведения значений процесса в два различные момента времени
(1)
где - двумерная плотность распределения
вероятностей процесса .
Анализируя данное выражение, замечаем, что величина интеграла будет больше в тех случаях, когда с увеличением (уменьшением) значений процесса в момент времени будут также увеличиваться (уменьшаться) значения процесса в момент времени . Следовательно, корреляционная функция определяет степень линейной зависимости между значениями случайного процесса в различные моменты времени. Чем быстрее изменяется случайный процесс, тем меньшее значение будет иметь функция корреляции при фиксированных моментах времени и .
|
Перечислим важнейшие свойства функции автокорреляции (корреляции) для стационарных случайных процессов с нулевым математическим ожиданием:
1. В пределе, при , значения реализации случайного процесса становятся статистически независимыми, следовательно предельное значение функции корреляции .
2. При , выражение (5) превращается в формулу для вычисления мощности (иначе - дисперсии) реализации случайного процесса, т.е.
3. Функция корреляции является четной функцией, т.е.
что следует из свойства инвариантности к направлению временного сдвига плотности распределения стационарного случайного процесса
4. Корреляционная функция всегда максимальна при .
|
|
История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!