Изображение плоских и пространственных фигур в параллельной проекции. Методика изучения тел вращения в школьном курсе геометрии. — КиберПедия


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Изображение плоских и пространственных фигур в параллельной проекции. Методика изучения тел вращения в школьном курсе геометрии.



Пусть в пространстве дана некоторая плоскость a, ее мы будем называть плоскостью изображения. Дано также некоторое направление проектирования на плоскостьa. Рассмотрим некоторую фигуру F в пространстве. Спроектируем ее на плоскостьa, получим фигуру F¢.

Определение.Фигура F1 плоскости изображения, подобная F¢, называется изображением фигуры F при параллельном проектировании.

Введем понятие аффинного отображения одной плоскости на другую.

Взаимно однозначное отображение плоскости aна плоскостьbназывается аффинным, если при этом отображении коллинеарные точки отображаются в коллинеарные и сохраняется простое отношение точек.

Аффинное отображение плоскости на себя представляет собой аффинное преобразование этой плоскости, которое было изучено ранее. Аффинные отображения обладают теми же свойствами, что и аффинные преобразования плоскости: неколлинеарные точки отображаются в неколлинеарные точки, репер плоскости – в репер плоскости, прямая линия – а прямую линию, отрезок – в отрезок, луч – в луч. Справедливо также основное свойство аффинных отображений, которое доказывается практически дословно, как и основное свойство аффинных преобразований плоскости.

Основное свойство аффинных отображений.Пусть на плоскости a дан аффинный репер R, а на плоскости b - аффинный репер R¢. Тогда существует единственное аффинное отображение плоскости a на плоскость b, при котором репер R отображается в репер R¢.

Будем считать, что фигура F плоскости a аффинно эквивалентна фигуре F¢ плоскости b,если существует аффинное отображениеaнаb, при котором образом F служит фигура F¢.

Из основного свойства аффинных отображений следует, что два треугольника, один из которых принадлежит плоскости a, а другой плоскостиb, аффинно эквивалентны.

Два четырехугольника АВСD и A¢B¢C¢D¢, один из которых принадлежит плоскостиa, а другой плоскости b, аффинноэквивалентны в том и только в том случае, когда (АС,О) =(A¢C¢,O¢), (BD,O) = (B¢D¢,O¢),где О и O' - соответственно точки пересечения их диагоналей AC и BD, А¢С¢иВ¢D¢.

Доказательства этого утверждения проводится дословно так же, как и в случае аффинных преобразований плоскости.

Справедлива следующая теорема.

Теорема.Фигура F1 плоскости b служит изображением фигуры F плоскости a в ом и только в том случае, когда они аффинно эквивалентны.

Треугольник изображается треугольником.

Четырехугольник – четырехугольником, точка пересечения диагоналей которого делит диагонали в том же отношении, что и у оригинала.



Поэтому прямоугольник, квадрат, ромб и параллелограмм изображаются параллелограммом.

Трапеция изображается трапецией, отношение оснований которой совпадает с отношением оснований оригинала.

Произвольный n– угольник изображается n– угольником. Рассмотрим пятиугольник ABCDE плоскости a, который изображается пятиугольникомA1B1C1D1E1плоскостиb. Треугольник ABC изображается произвольным треугольникомA1B1C1, а точки D1E1строятся следующими образом: точки пересечения диагонали A1C1с диагоналями B1E1и B1D1делит их в том же отношении, что и у оригинала.

Так как эллипс и окружности аффинно эквивалентны, то окружность изображается эллипсом, а ее перпендикулярные диаметры – сопряженными диаметрами эллипс, а центр - центром.

Теорема Польке – Шварца. Вершины любого четырехугольника A1B1C1D1плоскостиb, заданные в определенном порядке служат изображением аффинного репера, равного данному R(A,B,C,D).






Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.