Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Интересное:
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Дисциплины:
2017-06-29 | 725 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Докажем следующую основную теорему.
Теорема. Непрерывная на сегменте [ a, b ] функция f (x) интегрируема на этом сегменте.
Доказательство. Пусть дано любое ε > 0. В силу равномерной непрерывности функции f (x) на сегменте [ a, b ] для положительного числа ε /(b - a) можно указать такое δ > 0, что при разбиении T сегмента [ a, b ] на частичные сегменты [ xi -1, xi ], длины Δ xi которых меньше δ, колебание ωi функции f (x) на каждом таком частичном сегменте будут меньше ε /(b - a). Поэтому для таких разбиений T
Следовательно, для непрерывной на сегменте [ a, b ] функции f (x) выполнены достаточные условия интегрируемости.
Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x), вычислить ее значения в точках a и b и найти разность F(b) – F(a).
Методические особенности введения определения интеграла.
Тема изучается в 11 классе и главное её назначение – обучить учащихся вычислению площади криволинейной трапеции и других более сложных фигур и вычислять объемы геометрического тела с помощью интеграла. Значимость этой темы в том, что интегрирование или отыскание первообразной – это обратная задача отыскания производной. До изучения этой темы учащиеся могли выполнять над функциями следующие действия: сложение, вычитание, умножение и деление. После изучения этой темы учащиеся должны будут уметь выполнять новые действия: дифференцирование.
|
Изучение этой темы завершает школьный курс математического анализа
Данная тема включает в себя следующие вопросы: первообразная, основное свойство первообразной, три правила нахождения первообразных, площадь криволинейной трапеции, интеграл, формула Ньютона – Лейбница, применение интеграла.
Существует два способа введения понятия интеграла: 1 способ-рассмотрение интеграла как приращения первообразной; Например в учебнике А.Н. Колмогорова., и 2 способ-рассмотрение интеграла как предела интегральных сумм. Например, учебник Алимов Ш.А.
Наиболее трудный, недоступный для школьников – второй подход, так как теория пределов в школе не изучается. В школе используются первый подход. Sкр.тр.=F(b)-F(a) – такой подход реализован в современных учебниках.
Сравнительный анализ содержания темы в школьных учебниках
В учебнике А. Н. Колмогорова «Алгебра и начала анализа» при введении интеграла рассматривается задача о вычислении площади криволинейной трапеции. Автор приводит в учебнике два способа вычисления площади криволинейной трапеции: с помощью теоремы о площади криволинейной трапеции и с помощью интегральных сумм. Второй способ сводится к определению интеграла. С помощью интегральных сумм выводятся также формулы для вычисления объемов тел, работы переменной силы, а также нахождения массы стержня и центра масс.
В учебнике Мордковича А. Г. «Алгебра и начала анализа» при введении понятия «Определенный интеграл» рассматриваются задачи, приводящие к данному понятию, а именно задача о вычислении площади криволинейной трапеции, задача о вычислении массы стержня и задача о перемещении точки. Все три задачи при их решении приводятся к одной и той же математической модели.
В учебнике Никольского С. М. «Алгебра и начала анализа» рассмотрение задачи о вычислении площади криволинейной трапеции приводит к понятию интегральных сумм и пределу от них, после чего вводится определение определенного интеграла. Теоретическое обоснование применения определенного интеграла рассматривается в таких физических задачах, как задачи на работу силы, работу электрического заряда, на вычисление массы стержня переменной плотности, давления жидкости на стенку и центра тяжести.
|
В учебнике Ш. А. Алимова «Алгебра и начала анализа» перед введением понятия интеграла рассматривается задача о нахождении площади криволинейной трапеции, где вычисление площади сводится к отысканию первообразной F(х) функции f(x). Разность F(b)- F(a) называют интегралом от функции f(x) на отрезке [a; b]. Далее автор рассматривает вычисление площади криволинейной трапеции с помощью интегральных сумм, говорит о том, что такой способ приближенного вычисления интеграла требует громоздких вычислений и им пользуются в тех случаях, когда не удается найти первообразную функции. В качестве примеров применения интеграла приведены задачи о вытекании воды из бака и нахождении работы силы. Задачи для самостоятельного решения однотипны и их очень мало.
|
|
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!