Физическая сущность процесса сваривания при сварке давлением. — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Физическая сущность процесса сваривания при сварке давлением.

2017-06-02 431
Физическая сущность процесса сваривания при сварке давлением. 0.00 из 5.00 0 оценок
Заказать работу

Сварка давлением — это процесс соеди­нения поверхностных слоев деталей. При соединении происходит активная диффузия частиц, ведущая к полному исчезновению границы раздела и к прорастанию через нее кристаллов.

В современном машиностроении и приборостроении сварку давлением осуществляют несколькими путями в зависимости от типа изделий и требо­ваний, которые к ним предъявляются.

Контактная сварка широко применяется в машиностроении для изготов­ления изделий и конструкций, главным образом из сталей. Она относится к сварке с применением нагрева и давления. Нагрев осуществляется электри­ческим током, который проходит через место контакта двух свариваемых дета­лей. Давление, необходимое для сварки, создается или электродами, подводящими электрический ток, или специальными приспособлениями.

Различают три разновидности кон­тактной сварки: точечную — отдель­ными точками (рис. 105), применяемую для тонколистовых конструкций из стали (например, кузова автомашин). Сваривае­мые заготовки 1 зажимаются между элек­тродами 2, через которые проходит элект­рический ток большой силы от вторичной обмотки понижающего трансформатора 3, Место контакта свариваемых частей разо­гревается до высокой температуры, и под давлением усилия F происходит сварка; стыковую — оплавлением или давлением (рис. 106), применяемую для изготовления металлорежущего инструмента и др. В этом случае сваривае­мые детали 1 с силой стыкуются и удерживаются зажимами 2, к которым подводится электрический ток; роликовую (рис. 107, где 1 — свари­ваемые детали; 2 — ролики; 3 — электроды; 4 — источник энергии) — обес­печивающую непрерывный (герметичный) или прерывистый шов.

 

Технология сварки сталей перлитного класса со сталями аустенитного класса.

Особенности технологии сварки комбинированных конструкций из сталей различных структурных классов

Одна из причин пониженной свариваемости перлитной и аустенитной сталей - образование хрупкого мартенситного слоя или карбидной гряды в объеме переходной кристаллизационной прослойки, у которой уровень легирования металла снижается, приближаясь к перлитной стали. Образование этой прослойки объясняется ухудшением перемешивания жидкого металла в пристеночных слоях. При небольшом запасе аустенитности металла шва толщина этой прослойки может достигнуть критической величины, при которой происходит хрупкое разрушение сварного соединения.

Поэтому при выборе способов и режимов сварки отдают предпочтение технологии, при которой толщина кристаллизационной прослойки минимальна. Этого достигают следующими методами:

- Применением высококонцентрированных источников тепла (электронный луч, лазер, плазма);

  • Разделкой кромок или их наплавкой уменьшающей долю участия сталей;
  • Выбором режимов сварки с минимальной глубиной проплавления;
  • Переходом к дуговой сварке в защитных газах, обеспечивающей интенсивное перемешивание металла ванны.

Выбор сварочных материалов должен исключить образование трещин различных видов и обеспечить эксплуатационную надежность сварных соединений. Применяют аустенитные сварочные материалы, обеспечивающие получение композиций наплавленного металла с таким запасом аустенитности, чтобы компенсировать участие в шве перлитной стали и гарантированно получить в высоколегированном шве или наплавке аустенитную структуру (табл. 2). Ориентировочно необходимый состав наплавленного металла для получения шва, обладающего такой структурой, может быть определен по диаграмме Шеффлера (см. рис. 4). На этой диаграмме точки П и Б означают структуру свариваемых сталей. При соотношении их долей участия 0,4/0,6 расплав после охлаждения на диаграмме будет находиться в т. Г, т.е. будет иметь мартенситную или аустенитно-мартенситную структуру, что недопустимо.

Применив электрод типа Х15Н25 с высоким запасом аустенитности (т. В на диаграмме) в соотношении 50/50 к указанному выше расплаву, получим требуемый металл шва со структурой аустенита - отрезок а - б.

Табл. 3 Выбор композиции наплавленного металла и термообработки для сварки перлитных сталей с мартенситными, ферритными и аустенитно-ферритными

Группы свариваемых сталей Композиция наплавленного металла Предельная температура эксплуатации, °С Температура отпуска, °С
I, II + VI, VIII 09X1 М, 08ХГСМА, 08ХМ 300... 350 Подогрев, от­пуск 650... 680
I, II + VII 08Х24Н6ТАМФ   700... 740
III, IV + VII 0Х25Н13Г2   700... 740
IV + VI, VIII 09X1 МФ, 08ХМФА 400... 450 650... 700

Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.