Основные фотосинтетические пигменты, спектры поглощения, функции и химическая природа. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Основные фотосинтетические пигменты, спектры поглощения, функции и химическая природа.

2017-06-26 1089
Основные фотосинтетические пигменты, спектры поглощения, функции и химическая природа. 0.00 из 5.00 0 оценок
Заказать работу

Пигменты – это вещества, избирательно поглощающие свет в видимой части спектра. При освещении белым светом их цвет определяется только лучами, которые они отражают или пропускают. Способность пигментов поглощать свет, связано с наличием в их молекулах правильно чередующихся двойных и одинарных связей. Это так называемые сопряженные или коньюгированные связи. Между двумя атомами, связанными двойными связями, находится 4 электрона. Когда система состоит из сопряженных связей, то половина этих электронов может свободно перемещаться вдоль этой системы. Поглотив квант света, такой электрон может оторваться от молекулы пигмента, т. е. становится донором электронов для восстановления веществ. Сейчас известно, что высшие растения содержат две формы зеленых пигментов: хлорофиллы а и b и две формы желтых пигментов (каротиноиды): каротины и ксантофиллы, а так же фикобилины. Главную роль в фотосинтезе играет хлорофилл а. Суммарный химический состав молекулы хлорофилла можно выразить следующей формулой: хлорофилл а С55Н72О5N4Mg, хлорофилл b С55Н70О6 N4Mg. Указанные хлорофиллы отличаются одним атомом кислорода и двумя водорода, а по цвету хлорофилл а – сине-зеленый; b – желто-зеленый. По химической природе хлорофилл а представляет собой сложный эфир дикарбоновой кислоты хлорофиллина, в одном карбоксиле которой водород замещен остатком метанола, а в другом – фитола. Хлорофилл а – самый важный из фотосинтетических пигментов, он присутствует во всех фотосинтезирующих растениях. Существуют и другие формы хлорофиллов (b, с 1, с 2 и d), которые называются вспомогательными. Каротиноиды – жирорастворимые пигменты желтого, оранжевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветов, плодов, корнеплодов). В зеленых листьях их окраска маскируется хлорофиллом. Каротиноиды являются тетратерпеноидами (8 остатков изопрена) и содержат 40 атомов углерода. Они представляют собой цепи, которые имеют, как и хлорофилл, двойные сопряженные связи. На одном или двух концах цепи находятся иононовые кольца. Каротиноиды делят на две группы: каротины и ксантофиллы. Каротины, например α-каротин (С40Н56) представляет собой чистые углеводороды (тетратерпены). тогда как ксантофиллы: лютеин С40Н56О2 и виолоксантин С40Н56О4 являются окисленными соединениями. Каротины имеют оранжевую или красную окраску, а ксантофиллы – желтую. α-Каротин имеет одно β-иононовое кольцо (двойные связи между С5 и С6), а второе – ε-иононовое (двойные связи между С4 и С5). β-Каротин отличается от α- тем, что имеет два β-иононовых кольца. Относительная распространенность хлорофилла и каротиноидов в высших растениях составляет 4,5:1 (квантосомы содержат 230 молекул хлорофилла и 50 молекул каротиноидов). Интересно отметить, что животные обычно не синтезируют каротиноидов. Поэтому желтая и розовая расцветка птиц (например, канареек, фламинго), так же как и многочисленных беспозвоночных, обусловлена каротиноидами, которые они получают, поедая растения. К пигментам, которые участвуют в световой стадии фотосинтеза, относятся и фикобилины. Все фотосинтетические пигменты (хлорофиллы, каротиноиды и фикобилины) входят в состав пигментных систем в виде хромпротеинов, т. е. пигмент – белковых комплексов. Хлорофиллы и каротиноиды связаны с белками относительно слабо, связь между пигментом и белком не ковалентная. Поскольку такие связи легко нарушаются хлорофиллы и каротиноиды можно экстрагировать с помощью органических растворителей таких как ацетон, спирт. Фикобилины связаны с белком ковалентно, поэтому они находятся в виде молекул – фикобилипротеинов. Фикобилипротеины растворимы в воде и легко вымываются из мацерированных тканей водой или разбавленными растворами солей. Однако, для разрушения молекулы фикобилипротеинов путем расщепления связи между пигментом и белком необходим гидролиз в жестких условиях. По структуре фикобилины – тоже тетрапироллы, но с открытой цепью, которые имеют систему коньюгированных двойных и одинарных связей. Каротиноиды и фикобилины, как и хлорофиллы b, с 1, с 2 и d, называют вспомогательными или сопутствующими пигментами. Спектр поглощения. Все пигменты поглощают свет избирательно. Так, если пропустить белый свет через раствор хлорофилла, а затем разложить с помощью призмы, то увидим, что отдельные участки спектра будут сильно поглощаться, и на их месте увидим черные полосы. Другие участки спектра будут проходить через раствор хлорофилла в ослабленном виде.. Небольшая разница в строении молекулы хлорофиллов а и b обуславливает некоторую разницу в поглощении ими света. Хлорофилл а более полно поглощает свет с длиною волны 670, 680, 700 и 435 нм, а хлорофилл b – 650 и 480 нм. С наименьшим поглощением проходят через раствор хлорофилла или лист зеленые лучи и часть красных. У хлорофилла b полоса поглощения в красной части спектра смещена в сторону коротковолновых лучей, а в сине-фиолетовой – в сторону длинноволновых. Изучение спектров поглощения показало, что хлорофилл а в живом листе образует 8–10 форм, которые химически одинаковы, но отличаются по поглощению света. Такой результат обусловлен несколькими причинами. Во-первых, молекулы хлорофилла могут взаимодействовать между собой (агрегированная форма). Во-вторых, они взаимодействуют с компонентами мембран хлоропластов, в частности с белком. И, в третьих, это связано с динамическим состоянием молекул хлорофилла в тилакоидах. Хлорофилл беспрерывно разрушается под действием света (фотодесктрукция). На смену разрушенным молекулам в мембраны тилакоидов встраиваются новые.

 

23. Строение хлорофилла, образование системы двойных связей и свободных π-электронов.

Хлорофиллы. Хлорофилл является сложным органическим веществом. Одной из главных трудностей для выявления точного химического состава хлорофилла является его полная нерастворимость в воде и легкая изменчивость под воздействием солей, кислот и щелочей. Суммарный химический состав молекулы хлорофилла можно выразить следующей формулой: хлорофилл а С55Н72О5N4Mg, хлорофилл b С55Н70О6 N4Mg. Указанные хлорофиллы отличаются одним атомом кислорода и двумя водорода, а по цвету хлорофилл а – сине-зеленый; b – желто-зеленый. По химической природе хлорофилл а представляет собой сложный эфир дикарбоновой кислоты хлорофиллина, в одном карбоксиле которой водород замещен остатком метанола, а в другом – фитола. В основе молекулы лежит порфирин, который состоит из четырех пирольных колец (пронумерованы римскими цифрами), соединенных метиновыми мостиками (–СН=). В центре порфиринового ядра находится атом Mg, связанный с N. Таким образом, хлорофилл относится к Mg-порфиринам. Порфирины входят также в состав гема крови и являются важным компонентом систем, принимающих участие в дыхании; в этом случае вместо магния они содержат железо. Кроме пирольных в состав молекулы хлорофилла входит циклопентановое кольцо (V), которое содержит высокоактивную кетогруппу и участвует в окислении воды. Хлорофилл b отличается от хлорофилла а тем, что ко второму пирольному кольцу присоединена не метильная, а альдегидная группа. Четыре пирольных кольца и метиновые мостики образуют двойные связи. Между двумя атомами, связанными двойными атомами, находится 4 электрона. Когда система состоит из двойных связей, то половина этих π-электронов, как отмечалось, может свободно перемещаться вдоль системы. Молекулу хлорофилла делят на две части: порфириновое ядро и фитольный хвост. Фитольный хвост в два раза длиннее ядра. Порфириновое ядро благодаря наличию атомов кислорода и азота гидрофильно. Фитольный хвост – это углеводородная, а это значит гидрофобная часть молекулы хлорофилла. Поэтому порфириновое ядро размещается в гидрофильной части мембраны тилакоида, а фитольный хвост в гидрофобной. Имея разные свойства, две части молекулы хлорофилла выполняют разную функцию: порфириновое ядро содержащее коньюгированные связи, поглощает свет, а фитольный хвост играет роль якоря, который удерживает молекулу хлорофилла в определенной части мембраны тилакоида. Доказать, что свет поглощается порфириновым ядром молекулы хлорофилла, можно с помощью реакции хлорофилла со щелочью, в результате которой образуются два спирта (метанол и фитол) и соль хлорофилла. Щелочь отсекает от молекулы хлорофилла фитольный хвост, в результате образованная соль теряет способность растворяться в бензине, но сохраняет зеленый цвет хлорофилла. Следовательно, растворимость пигмента в бензине, его гидрофобность обусловлена остатком фитола, а поглощение света связано с порфириновым ядром. Атом магния также влияет на поглощение света молекулой хлорофилла. Если с помощью кислоты заместить магний на водород, то образовавшееся вещество – феофитин – принимает красно-бурый цвет вместо зеленого. В природных условиях образование феофитина происходит осенью, при старении листьев, под воздействием неблагоприятных факторов. В результате листья желтеют. При влиянии различных факторов происходит увеличение проницаемости мембран, и кислый вакуолярный сок, проникая в хлоропласты, преобразует хлорофилл в феофитин. Поскольку избирательная проницаемость мембран нарушается под воздействием разных факторов, то листья желтеют под воздействием низких и высоких температур, дефиците воды и ее избытке и т. д. Хлорофилл а – самый важный из фотосинтетических пигментов, он присутствует во всех фотосинтезирующих растениях. Существуют и другие формы хлорофиллов (b, с 1, с 2 и d), которые называются вспомогательными.

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.