Строение и функция клеточной стенки, цитоплазмы и рибосом растительной клетки. — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Строение и функция клеточной стенки, цитоплазмы и рибосом растительной клетки.

2017-06-26 635
Строение и функция клеточной стенки, цитоплазмы и рибосом растительной клетки. 0.00 из 5.00 0 оценок
Заказать работу

Клеточная стенка отграничивает размер протопласта и предохраняет его разрыв за счет поглощения воды вакуолью.

Клеточная стенка имеет специфические функции, которые важны не только для клетки и ткани, в которой клетка находится, но и для всего растения. Клеточные стенки играют существенную роль в поглощении, транспорте и выделении веществ, а, кроме того, в них может быть сосредоточена лизосомальная, или переваривающая активность.

Компоненты клеточной стенки. Наиболее типичным компонентом клеточной стенки является целлюлоза,которая в значительной степени определяет её архитектуру. молекулы целлюлозы состоят из повторяющихся молекул глюкозы, соединенных конец к концу. Длинные тонкие молекулы целлюлозы объединены вмикрофибриллы толщиной 10 – 25 нм. Микрофибриллы перевиваются и образуют тонкие нити, которые в свою очередь могут обматываться одна вокруг другой, как пряди в канате. Каждый такой «канат», или макрофибрилла, имеет толщину около 0,5 мкм, достигая в длину 4 мкм. Макрофибриллы прочны, как равная по величине стальная проволока.

Целлюлозный каркас клеточной стенки заполнен переплетающимися с ним целлюлозными молекулами матрикса. В его состав входят полисахариды, называемые гемицеллюлозами, и пектиновые вещества, илипектины, химически очень близкие к гемицеллюлозам.

Другой компонент клеточной стенки – лигнин – является самым распространенным после целлюлозы полимером растительных клеток. Лигнин увеличивает жесткость стенки и обычно содержится в клетках, выполняющих опорную или механическую, функцию.

Кутин, суберин, воска – обычно откладываются в оболочках защитных тканей растений. Кутин, например, содержится в клеточных оболочках эпидермы, а суберин - вторичной защитной ткани, пробки. Оба вещества встречаются в комбинации с восками и предотвращают чрезмерную потерю воды растением.

Слои клеточной стенки. Толщина стенки растительных клеток варьирует в широких пределах в зависимости от роли клеток в структуре растений и возраста самой клетки. Под электронным микроскопом просматривается в растительной клеточной стенке два слоя: срединная пластинка (называемая также межклеточным веществом), и первичной клеточной стенки. Многие клетки откладывают ещё один слой – вторичную клеточную стенку.Срединная пластинка располагается между первичными стенками соседних клеток. Вторичная стенка, если она есть, откладывается протопластом клетки на внутреннюю поверхность первичной клеточной стенки.

Срединная пластинка. Срединная пластинка состоит в основном из пектиновых веществ. Там, где должна возникнуть клеточная стенка, между двумя вновь образующимися клетками, вначале отмечается густое сплетение из канальцев эндоплазматической сети и цистерны аппарата Гольджи (диктиосом). Затем в этом месте появляются пузырьки, заполнены пектиновым веществом (из полисахаридов). Пузырьки эти отделяются от цистерн аппарата Гольджи. Ранняя клеточная стенка содержит различные полисахариды, основные из которых пектины и гемицеллюлоза. Позже в её состав входят более плотные вещества – целлюлоза и лигнин.

Первичная клеточная оболочка. Это слой целлюлозной оболочки, который откладывается до начала или во время роста клетки. Помимо целлюлозы, гемицеллюлоз и пектина первичные оболочки содержат гликопротеин. Первичные оболочки могут лигнифицироваться. Пектиновый компонент придаёт пластичность, которая позволяет первичной оболочке, растягивается по мере удлинения корня, стебля или листа.

Активно делящиеся клетки (большинство зрелых клеток, вовлеченных в процессы фотосинтеза, дыхания и секреции) имеют первичные оболочки. Такие клетки с первичной оболочкой и живым протопластом способны утрачивать характерную форму, делиться и дифференцироваться в новый тип клеток. Именно они участвуют в заживлении ран и регенерации тканей у растений.

Первичные клеточные оболочки не одинаковы по толщине на всем своем протяжении, а имеют тонкие участки, которые называются первичными поровыми полями. Тяжи цитоплазмы, или плазмодесмы, соединяющие протопласты соседних клеток, обычно проходят через первичные поровые поля.

Вторичная клеточная оболочка. Несмотря на то, что многие растительные клетки имеют только первичную оболочку, у некоторых к центру клетки протопласт откладывает вторичную оболочку. Обычно это происходит после прекращения роста клетки и площадь первичной оболочки более не увеличивается. По этой причине вторичная оболочка отличается от первичной. Вторичные оболочки особенно нужны специализированным клеткам, укрепляющим растение и проводящим воду. После отложения вторичной оболочки протопласт этих клеток, как правило, отмирает. Во вторичных оболочках больше целлюлозы, чем в первичных, а пектиновые вещества и гликопротеины в них отсутствуют. Вторичная оболочка растягивается с трудом, ее матрикс состоит из гемицеллюлозы.

Во вторичной оболочке можно выделить три слоя – наружный, средний и внутренний (S1, S2, S3). Слоистая структура вторичных оболочек значительно увеличивает их прочность. Микрофибриллы целлюлозы во вторичной оболочке откладывается плотнее, чем в первичной. Лигнин – обычный компонент вторичных оболочек древесины.

Поры в оболочках контактирующих клеток расположены напротив друг друга. Две лежащие друг против друга поры и поровая мембрана образуют пару пор. В клетках, имеющих вторичные оболочки, существуют два основных типа пор: простые и окаймленные. В окаймленных порах вторичная оболочка нависает над полостью поры. В простых порах этого нет.

Рост клеточной оболочки. По мере роста клетки увеличивается толщина и площадь клеточной оболочки. Растяжение оболочки – процесс сложный. Он контролируется протопластом и регулируется гормоном ауксином.

В клетках, растущих во всех направлениях равномерно, отложение миофибрилл носит случайный характер. Эти миофибриллы образуют неправильную сеть. Такие клетки обнаружены в сердцевине стебля, запасающих тканях и при культивировании клеток in vitro. В удлиняющихся клетках миофибриллы боковых оболочек откладывается под прямым углом к оси удлинения.

Вещества матрикса – пектины, гемицеллюлозы и гликопротеины переносятся к оболочке в пузырьках диктиосом. При этом пектины более характерны для растущих клеток, а гемицеллюлозы преобладают в не растущих клетках.

Целлюлозные микрофибриллы синтезируются на поверхности клетки с помощью ферментного комплекса, связанного с плазматической мембраной. Ориентация микрофибрилл контролируется микротрубочками, расположенными у внутренней поверхности плазматической мембраны.

Цитоплазм – сложная многокомпонентная пластичная, дифференцированная система, включающая ряд мембранных и немембранных структур. Именно в ЦП протекают основные процессы метаболизма.

Рибосомы — очень мелкие органоиды, диаметр их около 250А. По форме они почти шаровидны. Часть их прикреплена к наружным (гиалоплазматическим) поверхностям мембран, образующих каналы гранулярного эндоплазматического ретикулума; часть же находится в свободном состоянии в гиалоплазме. В клетке может содержаться до 5 млн. рибосом. Опи представляют собой.аппараты для синтеза белка. Поэтому особенно много их в клетках, активно образующих белок,— в растущих клетках, в клетках, секретирующих белковые вещества. Рибосомы имеются также в митохондриях и хлоропластах, где они синтезируют часть белков, из которых построены эти органоиды.

Во многих клетках обнаружены органоиды, названные микротрубочками. Само их название говорит об их форме—это трубочки с каналом внутри. Внешний их диаметр порядка 250А. Иногда это двойные трубочки — две одиночные, лежащие бок о бок друг с другом и имеющие общую стенку, которая разделяет их полости. Стенки микротрубочек построены из белковых молекул. Считают, что микротрубочки связаны с сократительной (двигательной) активностью цитоплазмы и ее образований. Из них, как из строительных деталей, построены, по-видимому, сократительные структуры жгутика — органоида, при помощи которого перемещаются некоторые одноклеточные и колониальные водоросли, а также клетки, служащие для размножения многих низших растений. Из микротрубочек во время деления клетки образуются нити веретена, о котором речь будет идти дальше. В период деления микротрубочки собираются в группы и образуют эти нити. По окончании деления нити вновь распадаются на отдельные микротрубочки. В клетках или их частях, которые лишены плотной оболочки, микротрубочки, возможно, выполняют опорную функцию, составляя внутренний скелет клетки.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.