
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Топ:
Техника безопасности при работе на пароконвектомате: К обслуживанию пароконвектомата допускаются лица, прошедшие технический минимум по эксплуатации оборудования...
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Интересное:
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Цель:
- сформировать навыки нахождения производных тригонометрических функций;
- развить умение вычисления значения производной при заданном значении аргумента;
- закрепить знания о способах дифференцирования сложной функции;
Материально – техническое обеспечение: методические указания по выполнению работы, стенды «Правила дифференцирования», таблица значений тригонометрических функций;
Время выполнения: 2 академических часа;
Ход занятия:
1. Изучить краткие теоретические сведения;
2. Выполнить задания;
3. Сделать вывод по работе;
4. Подготовить защиту работы по контрольным вопросам.
Краткие теоретические сведения:
Производные тригонометрических функций находят по правилам:
.
Пример 1. Найти производную функции y=sin и вычислить ее значение при
Решение. Это сложная функция с промежуточным аргументом sin .
Дифференцируем её по формулам
:
Вычислим значение производной при
Пример 2. Найти производную функций при данном значении аргумента:
Решение:
Используя формулы: , найдем производную:
Пример 3. Найти производную функции f ( x)= .
Решение. Сначала преобразуем функцию, используя свойства логарифмов:
Дифференцируя, получим:
Задания для самостоятельного выполнения:
Найти производные функций при данном значении аргумента.
Вариант 1.
1. 2.
3. 4.
Вариант 2.
1. 2.
3. 4.
Вариант 3.
1. 2.
3. 4.
Вариант 4.
1. 2.
3. 4.
Вариант 5.
1. 2.
3. 4.
Вариант 6.
1. 2.
3. 4.
Вариант 7.
1. 2.
3. 4.
Вариант 8.
1. 2.
3. 4.
Вариант 9.
1. 2.
3. 4.
Вариант 10.
1. 2.
3. 4.
Вариант 11.
1. 2.
3. 4.
Вариант 12.
1. 2.
3. 4.
Вариант 13.
1. 2.
3. 4.
Вариант 14.
1. 2.
3. 4.
Вариант 15.
1. 2.
3. 4.
Вопросы для самоконтроля:
1. Чему равны производные синуса и косинуса?
2. Чему равны производные тангенса и котангенса?
3. Запишите формулы производных обратных тригонометрических функций.
4. Как найти производную сложной тригонометрической функции?
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 12
ПРОИЗВОДНЫЕ ЛОГАРИФМИЧЕСКИХ И
ПОКАЗАТЕЛЬНЫХ ФУНКЦИЙ
Цель:
- сформировать навыки нахождения производных логарифмических и показательных функций;
- развить умение вычисления значения производной при заданном значении аргумента;
- закрепить знания о способах дифференцирования сложной функции;
Материально – техническое обеспечение: методические указания по выполнению работы, стенды «Правила дифференцирования», «Свойства логарифмов», таблица значений тригонометрических функций;
Время выполнения: 2 академических часа;
Ход занятия:
1. Изучить краткие теоретические сведения;
2. Выполнить задания;
3. Сделать вывод по работе;
4. Подготовить защиту работы по контрольным вопросам.
Краткие теоретические сведения:
Производные логарифмических и показательных функций находят по правилам:
Пример 1. Найти производную функции и вычислить значение
Решение. Используем формулу подставим в неё tg2 x вместо u.
Получаем, y´( x)=
Найдём значение производной в точке х = π∕8:
Пример 2. Найти производную функции и вычислить значение
Решение. Используем формулу и подставим в неё cos3 x
вместо u при условии а=5.
Получаем,
Найдём значение производной в точке х = π∕6:
Пример 3. Найти производную функции и вычислить значение
Решение. Используем формулу и подставим в неё 4 x+4
вместо u.
Получаем, y´( x)=
Найдём значение производной в точке х = 2:
y´(2)=
Пример 4. Найти производную функции и вычислить значение
Решение. Используем формулу и подставим в неё cos3 x
вместо u.
Получаем,
y´( x) =
Найдём значение производной в точке х = π ∕2:
y´( π ∕2)=
Задания для самостоятельного выполнения:
Найти производные функций при данном значении аргумента.
Вариант 1.
1. 2.
3. . 4.
.
Вариант 2.
1. 2.
3. 4.
Вариант 3.
1. 2.
3. 4.
Вариант 4.
1. 2.
3. 4.
Вариант 5.
1. 2.
3. 4.
Вариант 6.
1. 2.
3. 4.
Вариант 7.
1. 2.
3. 4.
Вариант 8.
1. 2.
3. 4.
Вариант 9.
1. 2.
3. 4.
Вариант 10.
1. 2.
3. 4.
Вариант 11.
1. 2.
3. 4.
Вариант 12.
1. 2.
3. 4.
Вариант 13.
1. 2.
3. 4.
Вариант 14.
1. 2.
3. 4.
Вариант 15.
1. 2.
3. 4.
Вопросы для самоконтроля:
1. Чему равна производная натурального логарифма?
2. Запишите формулу производной десятичного логарифма.
3. Чему равна производная экспоненциальной функции?
4. Как найти производную показательной функции с основанием а?
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 13
|
|
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!