Схема бактериологического метода при микробиологической — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Схема бактериологического метода при микробиологической

2017-09-30 605
Схема бактериологического метода при микробиологической 0.00 из 5.00 0 оценок
Заказать работу

Диагностики инфекционных заболеваний.

Суть бактериологического метода: выделение чистой культуры предполагаемого возбудителя и ее идентификация, т.е. определение его видовой принадлежности.

 

Цель: получение изолированных колоний

I этап.

 
 


по Граму

           
   
 
   
 
 


исследуемый

материал

питательная

среда

II этап. Цель: накопление чистой культуры

                   
     
 
   
     
 
 
 

 


to

 

по Граму скошенный

агар

III этап. Цель: идентификация исследуемой культуры

И определение ее антибиотикограммы

 

 

 
 


t° t° t° t°

 

по Граму «Пестрый ряд» РА с диагностич. р-ция фаголизиса метод дисков

сыворотками

t ° t ° t ° t °

       
   
 


 

 

IV этап.

Учет результатов. Выдача ответа Цель: идентификация исследуемой культуры (определение вида, биовара, серовара)

Тема 2: Физиология бактерий. Питание, дыхание, размножение, метаболизм и ферментные системы бактерий. Бактериологический метод диагностики инфекционных заболеваний (2-й день).

Цель занятия: знать механизмы размножения и роста бактерий; классификация бактерий по типу питания, биологического окисления; сущность процессов брожения; ферментные системы микроорганизмов.

уметь дифференцировать бактерии по культуральным и морфологическим признакам; пересевать чистую культуру на среду накопления (скошенный МПА); производить дезинфекцию кожных покровов; определить микробную обсемененность кожных покровов.

Задание на дом:

I. Вопросы для самоподготовки:

1. Метаболизм микроорганизмов

2. Ферментные системы микроорганизмов

3. Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов

4. Механизмы питания бактерий

5. Классификация микроорганизмов в зависимости от источника энергии

6. Виды биологического окисления. Классификация бактерий по типу дыхания — биологического окисления

7. Брожение и его виды

8. Условия культивирования бактерий

9. Рост и размножение бактерий. Фазы размножения бактерий

10. Бактериологический метод исследования. Проведение 2 этапа бактериологического метода выделения аэробов. Культуральные свойства бактерий

II. Базовый текст

Метаболизм микроорганизмов

Физиология микробов — раздел микробиологии, изучающий процессы жизнедеятельности: питание, дыхание, обмен веществ, движение, рост, размножение и взаимодействие микробов с окружающей средой.

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии.

Метаболизм (т.е. обмен веществ и энергии) — совокупность реакций жизнеобеспечения, происходящих в микробной клетке при участии биологических катализаторов — ферментов. Ферменты — высокоактивные биологические молекулы, способные к многократному взаимодействию с определенным субстратом. Питательные вещества, поступающие в клетку и участвующие в реакциях метаболизма, называются субстратоми являются точкой приложения или объектом действия ферментов. Субстраты, в результате последовательных ферментативных реакций, расщепляются и образуются метаболиты — промежуточные или конечные продукты метаболизма.

Метаболизм включает два взаимосвязанных процесса: катаболизм, или энергетический метаболизм и анаболизм, или конструктивный метаболизм.

Катаболизм связан с окислительно-восстановительными реакциями. В процессе катаболизма (энергетического обмена) происходит расщепление крупных молекул до более простых соединений, при этом рвутся химические связи и освободившаяся энергия этих связей идет на процессы жизнедеятельности или запасается в клетке в виде фосфосодержащих органических соединений (АТФ, УДФ, волютин и т.п.). Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) — осмотрофы, или в виде отдельных частиц — фаготрофы.

Анаболизм (конструктивный обмен) включает реакции, обеспечивающие синтез макромолекул органических соединений, из которых строится тело микробной клетки, и протекает с поглощением энергии.

Взаимосвязь катаболизма и анаболизма проявляется еще и в том, что на определенных этапах метаболизма образуются промежуточные продукты, которые могут быть использованы в обоих процессах. Эта часть метаболизма называется амфиболизмом. а промежуточные продукты — амфиболиты.

Особенности метаболизма у бактерий состоят в том, что:

• его интенсивность имеет достаточно высокий уровень, что воз­можно обусловлено гораздо большим соотношением поверхно­сти к единице массы, чем у многоклеточных;

• процессы диссимиляции преобладают над процессами ассимиляции;

• субстратный спектр потребляемых бактериями веществ очень широк — от углекислого газа, азота, нитритов, нитратов до ор­ганических соединений, включая антропогенные вещества — загрязнители окружающей среды (обеспечивая тем самым про­цессы ее самоочищения);

• бактерии имеют очень широкий набор различных ферментов — это также способствует высокой интенсивности метаболиче­ских процессов и широте субстратного спектра.

2. Ферментные системы микроорганизмов

В основе метаболических реакций, протекающих в клетке, лежит деятельность ферментов — самого крупного и высокоспециализированного класса белков. Микроорганизмы синтезируют самые разнообразные ферменты, которые относятся к шести известным классам: оксидоредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы (табл. 13). Их значение в жизнедеятельности клетки:

· Гидролазы — гидролитический катализ белков, жиров и углеводов

· Оксидоредуктазы — участие в окислительно-восстановительных процессах

· Трансферазы — перенос определенных радикалов

· Лиазы — участие в соединении двух молекул

· Изомеразы — участие в изомеризации органических соединений

· Лигазы — участие в реакциях присоединения и отрыва групп

Таблица 13. Классы ферментов

Класс ферментов Тип катализируемых химических реакции Примеры
Оксидоредуктазы Окислительно-восстановительные реакции, лежащие воснове биологического окисления, осуществляют перенос водорода и электронов от донора к акцептору Цитохромоксидаза, дегидрогеназа, пероксидаза, каталаза и др.
Трансферазы Осуществляют внутри- и межмолекулярные переносы различных атомов, групп атомов и радикалов. Аденозинтрифосфатаза, аминотрансфераза и др.
Гидролазы Расщепляют внутримолекулярные связи (пептидные, эфирные, гликозидные и др.)органических веществ с присоединением воды Фосфатаза, амидаза, эстераза, гликозидаза, ДНК-аза, РНК-аза,карбогидролаза, протеазы, аргиназа, уреаза, нейраминидаза, гиалуронидаза, лейцитиназа и др.
Лиазы Разрывают связи всубстратах без присоединения воды, что приводит к отщеплению различных групп и образованию двойных связей или присоединению групп к месту двойной связи. Декарбоксилаза, дезаминаза и др.
Изомеразы   Осуществляют внутримолекулярные перестройки с образованием изомеров. Глюкозо-6-фосфатизомераза, рацемаза и др.
Лигазы(синтетазы) Осуществляют синтез органических веществ из исходных молекул с использованием энергии распада фосфатных связей (распад АТФ или других макроэргических молекул). Глютаминсинтетаза, аспарагинсинтетаза, карбоксилаза и др.

Ферментный состав любого микроорганизма определяется его геномом и является достаточно постоянным признаком. Многие ферменты связаны со структурными компонентами микробной клетки и определяют интенсивность процессов биосинтеза, идущего в них. Так, например, в ЦПМ находятся окислительно-восстановительные ферменты, участвующие в дыхании. В клеточной стенке идет синтез ферментов, связанных с делением клетки и ее аутолизом. Основная часть ферментов локализована в цитоплазме. Ферменты продуцируются самой микробной клеткой и по месту, выполняемой им функции разделяются на экзоферменты и эндоферменты.

Экзоферменты — ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (протеазы, поли­сахаридазы, олигосахаридазы). Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь ис­точниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепля­ют крупные молекулы пептидов, полисаха­ридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализо­ваны в периплазматическом пространстве бактериальной клетки. Они участвуют в про­цессах переноса веществ в бактериальную клетку. Наличие экзофермен­тов можно определить при помощи диффе­ренциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

По назначению экзоферменты следует разделить на следующие группы:

· Ферменты, обеспечивающие выполнение своих физиологических процессов, связанных с ростом и размножением микробной культуры.

· Ферменты, обеспечивающие микробной клетке защитные свойства. Например, ферменты, инактивирующие антибиотики.

· Ферменты патогенности. Эта группа ферментов продуцируется, как правило, патогенными микроорганизмами. Выделяют ферменты, обеспечивающие микробной клетке защиту от неспецифических факторов защиты макроорганизма (ферменты инвазии — нейраминидаза, гиалуронидаза, коллагеназа), а также ферменты, активизирующие работу биологически активных соединений клеток макроорганизма и приводящие ее к гибели. Это ферменты агрессии (эксфолиатины способны модифицировать гормоны или протеазы, разрушающие структуры клеток инфицированного организма и т.д.).

Эндоферменты — ферменты бактерий, действующие на субстраты внутри клетки (расщепляющие аминокислоты, моносахара и др.).

Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи, т. е. для одних — репрессируется, а для других — индуцируется субстратом. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий.

Ферменты разделяют на конститутивные (фермен­ты гликолиза) — это группа ферментов, синтез которых не зависит от нали­чия субстрата в среде, он имеет место всегда, и эти ферменты всегда со­держатся в микробных клетках в определенных концентрациях.

Ферменты, синтез которых зависит от наличия соответствую­щего субстрата в среде (бета-галактозидаза, бета-лактамаза), называются индуцибельными или адаптивными (ферменты, которые бактерии продуцируют в определенных условиях.В отсутствии субстрата они находятся в клетках в следовых концентрациях.

Одной из особенностей ферментов микроорганизмов является преобладание адаптивных ферментов над конститутивными, что связано как с малым объемом цитоплазмы, так и с их ролью главного механизма адаптации к меняющимся условиям внешней среды. Индуцибельные ферменты синтезируются микробной клеткой только в ответ на наличие в среде определенного субстрата.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.115 с.