Техника упражнений. Работа над ошибками — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Техника упражнений. Работа над ошибками

2017-05-13 319
Техника упражнений. Работа над ошибками 0.00 из 5.00 0 оценок
Заказать работу

Еще в этой категории

16.04.2017 Автор: Мирошниченко 29.03.2017 Автор: Мирошниченко 20.03.2017 Автор: kloder 16.03.2017 Автор: Мирошниченко

fitness-pro.ru

Синтез и распад белка в скелетных мышцах человека во время и после упражнений

Автор: admin

27.02.2012

Vinod Kumar,
Philip Atherton,
Kenneth Smith,
Michael J. Rennie

Источник: jap.physiology.org
Перевод - Сергей Струков

Скелетные мышцы демонстрируют удивительную пластичность в ответ на изменения типа, продолжительности и интенсивности нагрузки, которые могут вызвать гипертрофию или атрофию, ограниченную гиперплазию и дифференциальную экспрессию множества белков и даже целых органелл, таких как митохондрии, с результирующими изменениями метаболизма субстратов и белков. С целью лучшего описания упражнения традиционно подразделяются на «аэробные / на выносливость» и «с отягощением (силовые)». Основное видимое отличие упражнений на выносливость (то есть повторяющихся низкоинтенсивных сокращений, которые могут выполняться продолжительное время) – смещение фенотипа в сторону возрастания количества волокон с более высокими окислительными способностями, в то время как повторные упражнения с отягощением (представляющие собой сокращения высокой интенсивности) вызывают гипертрофию волокон (и, вероятно, некоторую гиперплазию вследствие активации клеток-сателлитов). В реальности присутствует существенное «перекрытие» между вариантами ответов, это происходит вследствие восприятия и распределения мышцей сигналов в ответ на активность, которые приводят к постоянной адаптации к специфичной природе, интенсивности и продолжительности упражнений. В предлагаемом обзоре упражнения будут разделяться на «резистивные» (с дополнительным отягощением) и «нерезистивные» (без отягощения)…

Обновлено 16.03.2015 16:03

…Целью обзора является описание регуляции обмена мышечных белков у человека во время и после упражнения, влияния на него факторов окружающей среды, таких как тип нутриентов, состав и уровень потребления, а также полового диморфизма и возраста. В обзоре представлены следующие темы:

  1. методики изучения обмена в мышцах человека;
  2. упражнения и общий мышечный белковый баланс;
  3. синтез мышечного протеина (СМП) и упражнения с отягощением (во время и после упражнения);
  4. СМП в упражнениях без отягощения (во время и после);
  5. распад мышечного протеина (РМП) и упражнения (во время и после упражнений с отягощениями и без них);
  6. влияние пищи (и синергия с упражнениями) на обмен мышечных белков;
  7. влияние продолжительной тренировки на метаболизм мышечных белков;
  8. пол и упражнения;
  9. старение и упражнения.

Мы включили в обзор три таблицы, в которых суммированы наиболее исчерпывающие исследования в данной области, проведенные в последние два-три десятилетия, освещающие специфичные переменные: возраст и пол, тип выполняемых упражнений, нутрициональные манипуляции, а также изменения в синтезе и распаде белков, позволяющие читателю ознакомиться с работами в данной области. Мы также включили рисунок, схематически отображающий основные клеточные сигнальные пути, вовлеченные в регуляцию синтеза мышечного белка в ответ на упражнения и прием пищи, – так, где возможно, мы кратко опишем связанные с этим изменения активности регуляторных путей как итог изменений их статуса фосфорилирования.

Мы ограничимся явлениями, происходящими в течение минут и часов (реже дней, исключительно для эффектов тренировки) во время или после упражнения. Изменения во время упражнения отражают активацию метаболических приоритетов в направлении переноса энергии для мышечной работы при множественных изменениях, таких как ингибирование синтеза белка, увеличение трансаминирования и окисления аминокислот – скорее сопровождающее явление, нежели специфическая функциональная адаптация в ответ на упражнения. Изменения в обмене мышечного белка в период после упражнений больше отражает приспособительное ремоделирование (например, увеличение синтеза группы миофибриллярных протеинов, ведущей к гипертрофии). Мы не будем обсуждать изменения в уровнях транскрипции генов.

УПРАЖНЕНИЯ И ОБЩИЙ БАЛАНС БЕЛКА В МЫШЦАХ

Мышечная масса поддерживается путем регулирования баланса между СМП и РМП. Общее увеличение мышечной массы возможно только в случае, если СМП превышает РМП, то есть при положительном белковом балансе, и наоборот. Во время отдыха в состоянии голода (правильнее называть постабсорбтивное состояние) общий баланс белка отрицательный, а позитивный баланс обычно наблюдается только, когда во время еды восполняются потери мышечного белка, поддерживая стабильную массу мышц. После упражнений в состоянии голода, независимо от увеличения СМП (см. ниже), общий баланс белка становится даже более негативным, не достигая положительных величин, так как уровень РМП, повышенный перед упражнениями, также повышается (13). Тем не менее, когда протеин или аминокислоты потребляются после тренировки, общий баланс белка становится положительным, так как СМП подавляет РМП, который может быть пониженным сам по себе (111).

РМП И УПРАЖНЕНИЯ

Во время упражнений с отягощениями

Только метод, основанный на A-V растворенных меченых аминокислотах, обсуждаемый ранее, доступен в настоящее время, однако его точность в данном случае весьма сомнительна. Насколько нам известно, только в двух исследованиях отслеживали уровень растворения меток «во время» упражнения (в действительности – во время отдыха между подходами) в постабсорбтивном состоянии; в этих исследованиях наблюдаемый уровень фенилаланина, показателя распада белка, не повышался во время отдыха (39, 114). Возможно, это объясняется тем, что протеолиз в мышцах происходит преимущественно через АТФ-зависимую убиквитинпротеазную систему (3), отношение АДФ к АТФ увеличивается во время упражнений, что может быть причиной его (распада) подавления во время выполнения упражнений, как в случае синтеза белка (см. выше).


После упражнений с отягощениями

Какой бы ни была неопределенность для периода упражнений, несомненно, что в постабсорбтивном состоянии после упражнения протеолиз в мышцах увеличивается, как показано с помощью растворенных меток (13, 15) и методом оценки уровня фракционного распада (ФРУ) (65). Перед упражнениями мышцы имели отрицательный баланс аминокислот, и эта ситуация лишь немного улучшалась при выполнении интенсивных упражнений с отягощениями, потому что, в то время как СМП увеличивался вдвое, ФРУ, существенно больший, чем ФРУ в постабсорбтивном состоянии, также увеличивался на 30–50 % спустя 3 часа, таким образом поддерживался отрицательный баланс (13, 85, 86). Тем не менее повышение распада в мышцах меньше по времени, чем уровень фракционального синтеза (24 часа по сравнению с 48) (85).


РМП и упражнения без отягощения

Неясны изменения РМП во время упражнений без отягощения. Во множестве экспериментов с циклическими упражнениями отмечали увеличение высвобождения аминокислот из нижних конечностей (72, 73) и на основании этого делали вывод о повышении протеолиза. Тем не менее высвобождение аминокислот объясняется скорее ингибированием синтеза белка, что приводит к недостаточной компенсации распада, и в результате из аминокислотного пула высвобождаются свободные аминокислоты.

Не вызывает сомнений, что в постабсорбтивном состоянии после упражнений без отягощений (45 минут ходьбы на тредмилле при 40 % VO2max) протеолиз в скелетных мышцах повышается как у молодых, так и у пожилых мужчин. В нижних конечностях увеличение протеолиза наблюдается через 10 и исчезает через 60 минут, но только у молодых субъектов (101).

Противоположные результаты получены с помощью микродиализа: концентрация 3МеН в диализате не изменялась от 6 до 72 часов после маховых упражнений одной ногой в течение часа при ̴ 70 % РМ (55). Возможно, это объясняется тем, что протеолизу подвергались «немиофибриллярные» протеины, при этом 3МеН не образуется, но более вероятно, что этот метод вообще не подходит для оценки мышечного протеолиза (13, 85, 95).


Сигнальные пути и РМП

Сигнальные пути, контролирующие РМП и протеолиз в мышцах человека, не определены. Различные протеолитические пути (включая лизосомальный, активируемый кальцием и убиквитин-протеосомо-зависимую систему, каспазы и металлопротеазы, а также неспецифические ди- и трипептидазы) вовлечены в ремоделирование мышц вследствие упражнений, но долевое участие каждого из них непонятно.
Увеличение активности активируемых кальцием протеаз и металлопротеаз отмечено в мышцах крысы во время и после бега на тредмилле (9, 25). Существует ограниченное количество сообщений об измерениях острых изменений производительности или контроля путей мышечного протеолиза у людей. В мышцах грызунов обнаружены две мышечные убиквитинлигазы, F-box мышечной атрофии (MAFbx) и мышечный reallyinterestingnovelgene fingerprotein 1 (MuRF1), стимулирующие протеолиз (3). Исследования экспрессии протеолитических генов в мышцах молодых субъектов спустя 4 часа после упражнений с отягощением, особенно экспрессии генов убиквитинапротеосом, показали увеличение активности MARFbxи MuRF1мРНК, но без существенных изменений в forkheadbox 3AмРНК (91). Парадоксально, но эксперименты нашей группы обнаружили снижение активности MARFbxм РНК в первые 24 часа после упражнений с отягощениями, которое означало увеличение РМП в посттренировочном состоянии (65). Это может быть связано с объемом и видом упражнения, выполняемого в последнем исследовании, где испытуемые выполняли подъемы на ступеньку с дополнительным отягощением, составлявшим 25 % от их массы тела, до полного утомления, а также со временем измерения. С другой стороны, в нашей лаборатории ранее не обнаружено прямой зависимости между РМП и экспрессией MARFbx (50). В любом случае существует и активируется множество путей, тем не менее интересно представить, как интактные миофибриллярные белки могут «реконструироваться» или ремоделироваться таким образом, чтобы оставалось место для вновь созданных протеинов, которые, согласно нескольким исследованиям (101, 113), синтезируются в течение часов после стимуляции упражнением.

ВЫВОДЫ

Подводя итог, можно констатировать, что мышцы показывают удивительную пластичность в ответ на упражнения. Во время упражнений с отягощениями и без них СМП подавляется, тогда как после тренировки – повышается как в голодном, так и в сытом состоянии. Эта стимуляция проявляет зависимость от дозы и величины воздействия; тем не менее, для выяснение роли рабочей нагрузки требуются дополнительные исследования. Независимо от различий в нагрузке и наличия (или отсутствия) отягощения, сократительная активность вызывает сходный срочный анаболический ответ в нетренированных мышцах. Однако после периода тренировок срочный ответ уменьшается и зависит от вида упражнений: с отягощением или без отягощения и стимулирует синтез белков миофибрилл (с отягощением) или митохондрий (без отягощения), вероятно, отражая адаптивные изменения в зависимости от вида упражнения. Активация РМП во время упражнения с отягощением или без остается невыясненной. Тем не менее существует достаточно данных, подтверждающих увеличение РМП после обоих видов упражнений. Общее увеличение мышечной массы (СМП – РМП) после упражнений проявляется только при повышении доступности аминокислот во время постнагрузочного периода. Приблизительно 20 г высококачественного белка, например молочного, достаточно для инициации максимального синтетического ответа и, соответственно, общего увеличения массы мышц.

С возрастом уменьшается синтез белка миофибрилл в ответ на упражнение и потребление пищи, последние данные свидетельствуют о существовании половых различий в обмене мышечного белка, особенно об уменьшении ответа на упражнения у пожилых женщин.

Активация АМРК в результате клеточных запасов энергии играет важную роль в ингибировании синтеза белка. Увеличение синтеза белка после упражнений опосредуется активацией передачи сигналов mTOR и последующих эффекторов. Связь времени и величины ответа между упражнениями и фосфорилированием регуляторов клеточных сигнальных путей, вовлеченных в синтез и деградацию белка, только начинает выясняться. Несмотря на то что эти процессы фосфорилирования в основном качественно проявляются в результате анаболических стимулов, таких как упражнения, требуется гораздо больше работ для расшифровки сигналов, которые их включают или выключают и в конечном счете контролируют адаптивный ответ, например, мышечную гипертрофию или биогенез митохондрий. Конечно, в настоящее время невозможно напрямую связать размеры активации обмена мышечных белков с фосфорилированием сигнальных молекул. Когда мы сможем сделать это, мы будем гораздо ближе к нашей цели – пониманию регуляции мышечной массы и функции и разработке стратегии максимизации поддержания мышц в здоровье и болезни.

REFERENCES

  1. Aronson D., Violan M.A., Dufresne S.D., Zangen D., Fielding R.A., Goodyear L.J. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J ClinInvest, 99: 1251–1257, 1997. Medline
  2. Atherton P.J., Babraj J., Smith K., Singh J., Rennie M.J., Wackerhage H. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J, 19: 786–788, 2005. Abstract/FREE FullText
  3. Attaix D., Ventadour S., Codran A., Bechet D., Taillandier D., Combaret L.The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem, 41: 173–186, 2005. CrossRefMedline
  4. Baar K., Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol, 276: C120–C127, 1999. Abstract/FREE Full Text
  5. Balagopal P., Schimke J.C., Ades P., Adey D., Nair K.S. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab, 280: E203–E208, 2001. Abstract/FREE Full Text
  6. Bamman M.M., Hill V.J., Adams G.R., Haddad F., Wetzstein C.J., Gower B.A., Ahmed A., Hunter G.R. Gender differences in resistance-training-induced myofiber hypertrophy among older adults. J Gerontol A BiolSciMedSci, 58: 108–116, 2003. Medline
  7. Beelen M., Koopman R., Gijsen A.P., Vandereyt H., Kies A.K., Kuipers H., Saris W.H., van Loon L.J. Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am J Physiol Endocrinol Metab, 295: E70–E77, 2008. Abstract/FREE Full Text
  8. Beelen M., Tieland M., Gijsen A.P., Vandereyt H., Kies A.K., Kuipers H., Saris W.H., Koopman R., van Loon L.J. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr, 138: 2198–2204, 2008. Abstract/FREE FullText
  9. Belcastro A.N. Skeletal muscle calcium-activated neutral protease (calpain) with exercise.J ApplPhysiol, 74: 1381–1386, 1993. Abstract/FREE FullText
  10. Bennet W.M., Connacher A.A., Scrimgeour C.M., Smith K., Rennie M.J. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1‑13C]leucine. ClinSci (Lond), 76: 447–454, 1989. Medline
  11. Benziane B., Burton T.J., Scanlan B., Galuska D., Canny B.J., Chibalin A.V., Zierath J.R., Stepto N.K. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab, 295: E1427–E1438, 2008. Abstract/FREE Full Text
  12. Bier D.M.. Stable isotopes in biosciences, their measurement and models for amino acid metabolism. Eur J Pediatr, 156, Suppl 1: S2–S8, 1997. CrossRefMedline
  13. Biolo G., Maggi S.P., Williams B.D., Tipton K.D., Wolfe R.R. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab, 268: E514–E520, 1995. Abstract/FREE Full Text
  14. Biolo G., Tipton K.D., Klein S., Wolfe R.R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol Endocrinol Metab, 273: E122–E129, 1997. Abstract/FREE Full Text
  15. Biolo G., Williams B.D., Fleming R.Y., Wolfe R.R. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes, 48: 949–957, 1999. Abstract
  16. Bohe J., Low A., Wolfe R.R., Rennie M.J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol, 552: 315–324, 2003. Abstract/FREE FullText
  17. Bohe J, Low J.F., Wolfe R.R., Rennie M.J. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol, 532: 575–579, 2001. Abstract/FREE FullText
  18. Bolster D.R., Crozier S.J., Kimball S.R., Jefferson L.S. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J BiolChem, 277: 23977–23980, 2002. Abstract/FREE FullText
  19. Bolster D.R., Kubica N., Crozier S.J., Williamson D.L., Farrell P.A., Kimball S.R., Jefferson L.S. Immediate response of mammalian target of rapamycin (mTOR)-mediated signaling following acute resistance exercise in rat skeletal muscle. J Physiol, 553: 213–220, 2003. Abstract/FREE FullText
  20. Borsheim E., Cree M.G., Tipton K.D., Elliott T.A., Aarsland A., Wolfe R.R. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J ApplPhysiol, 96: 674–678, 2004. Abstract/FREE FullText
  21. Borsheim E., Tipton K.D., Wolf S.E., Wolfe R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab, 283: E648–E657, 2002. Abstract/FREE Full Text
  22. Bowtell J.L., Leese G.P., Smith K., Watt P.W., Nevill A., Rooyackers O., Wagenmakers A.J., Rennie M.J. Modulation of whole body protein metabolism, during and after exercise, by variation of dietary protein. J ApplPhysiol, 85: 1744–1752, 1998. Abstract/FREE FullText
  23. Brodsky I.G., Balagopal P., Nair K.S. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab, 81: 3469–3475, 1996. Abstract
  24. Bylund-Fellenius A.C., Ojamaa K.M., Flaim K.E., Li J.B., Wassner S.J., Jefferson L.S. Protein synthesis versus energy state in contracting muscles of perfused rat hindlimb. Am J Physiol Endocrinol Metab, 246: E297–E305, 1984. Abstract/FREE Full Text
  25. Carmeli E., Moas M., Lennon S., Powers S.K. High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. ExpPhysiol, 90: 613–619, 2005. Abstract/FREE FullText
  26. Carraro F., Hartl W.H., Stuart C.A., Layman D.K., Jahoor F., Wolfe R.R. Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol Endocrinol Metab, 258: E821–E831, 1990. Abstract/FREE Full Text
  27. Carraro F., Stuart C.A., Hartl W.H., Rosenblatt J., Wolfe R.R. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol Endocrinol Metab, 259: E470–E476, 1990. Abstract/FREE Full Text
  28. Cheng K.N., Dworzak F., Ford G.C., Rennie M.J., Halliday D. Direct determination of leucine metabolism and protein breakdown in humans using l-[1-13C,15N]-leucine and the forearm model. Eur J ClinInvest, 15: 349–354, 1985. Medline
  29. Chesley A., MacDougall J.D., Tarnopolsky M.A., Atkinson S.A., Smith K. Changes in human muscle protein synthesis after resistance exercise. J ApplPhysiol, 73: 1383–1388, 1992. Abstract/FREE FullText
  30. Chinkes D., Klein S., Zhang X.J., Wolfe R.R. Infusion of labeled KIC is more accurate than labeled leucine to determine human muscle protein synthesis. Am J Physiol Endocrinol Metab, 270: E67–E71, 1996. Abstract/FREE Full Text
  31. Coffey V.G., Hawley J.A. The molecular bases of training adaptation. SportsMed, 37: 737–763, 2007. CrossRefMedline
  32. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., Wackerhage H., Taylor P.M., Rennie M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J, 19: 422–424, 2005. Abstract/FREE FullText
  33. Cuthbertson D.J., Babraj J., Smith K., Wilkes E., Fedele M.J., Esser K., Rennie M. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab,290: E731–E738, 2006. Abstract/FREE Full Text
  34. Deldicque L., Atherton P., Patel R., Theisen D., Nielens H., Rennie M.J., Francaux M. Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J ApplPhysiol, 104: 57–65, 2008. CrossRefMedline
  35. Dohm G.L., Tapscott E.B., Barakat H.A., Kasperek G.J. Measurement of in vivo protein synthesis in rats during an exercise bout. BiochemMed, 27: 367–373, 1982. CrossRefMedline
  36. Dreyer H.C., Drummond M.J., Pennings B., Fujita S., Glynn E.L., Chinkes D.L., Dhanani S., Volpi E., Rasmussen B.B. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab, 294: E392–E400, 2008. Abstract/FREE Full Text
  37. Dreyer H.C., Fujita S., Cadenas J.G., Chinkes D.L., Volpi E., Rasmussen B.B. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol, 576: 613–624, 2006. Abstract/FREE FullText
  38. Drummond M.J., Dreyer H.C., Pennings B., Fry C.S., Dhanani S., Dillon E.L., Sheffield-Moore M., Volpi E., Rasmussen B.B. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J ApplPhysiol, 104: 1452–1461, 2008. Abstract/FREE FullText
  39. Durham W.J., Miller S.L., Yeckel C.W., Chinkes D.L., Tipton K.D., Rasmussen B.B., Wolfe R.R. Leg glucose and protein metabolism during an acute bout of resistance exercise in humans. J ApplPhysiol, 97: 1379–1386, 2004. Abstract/FREE FullText
  40. Esmarck B., Andersen J.L., Olsen S., Richter E.A., Mizuno M., Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol, 535: 301–311, 2001. Abstract/FREE FullText
  41. Forbes G.B. The effect of anabolic steroids on lean body mass: the dose response curve. Metabolism, 34: 571–573, 1985. CrossRefMedline
  42. Fujii N., Hayashi T., Hirshman M.F., Smith J.T., Habinowski S.A., Kaijser L., Mu J., Ljungqvist O., Birnbaum M.J., Witters L.A., Thorell A., Goodyear L.J. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. BiochemBiophysResCommun, 273: 1150–1155, 2000. CrossRefMedline
  43. Fujita S., Dreyer H.C., Drummond M.J., Glynn E.L., Volpi E., Rasmussen B.B. Essential amino acid and carbohydrate ingestion prior to resistance exercise does not enhance post-exercise muscle protein synthesis. J ApplPhysiol. Inpress.
  44. Fujita S., Rasmussen B.B., Bell J.A., Cadenas J.G., Volpi E. Basal muscle intracellular amino acid kinetics in women and men. Am J Physiol Endocrinol Metab, 292: E77–E83, 2007. Abstract/FREE Full Text
  45. Funai K., Parkington J.D., Carambula S., Fielding R.A. Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 290: R1080–R1086, 2006. Abstract/FREE Full Text
  46. Gautsch T.A., Anthony J.C., Kimball S.R., Paul G.L., Layman D.K., Jefferson L.S. Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol Cell Physiol, 274: C406–C414, 1998. Abstract/FREE Full Text
  47. Glover E.I., Phillips S.M., Oates B.R., Tang J.E., Tarnopolsky M.A., Selby A., Smith K., Rennie M.J. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol, 586: 6049–61, 2008. Abstract/FREE FullText
  48. Gollnick P.D., Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. ClinPhysiol, 2: 1–12, 1982. Medline
  49. Goodpaster B.H., Chomentowski P., Ward B.K., Rossi A., Glynn N.W., Delmonico M.J., Kritchevsky S.B., Pahor M., Newman A.B. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J ApplPhysiol, 105: 1498–1503, 2008. Abstract/FREE FullText
  50. Greenhaff P.L., Karagounis L., Peirce N., Simpson E.J., Hazell M., Layfield R., Wackerhage H., Smith K., Atherton P., Selby A., Rennie M.J. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin-ligases and protein turnover in human muscle. Am J Physiol Endocrinol Metab, 295: E595–E604, 2008. Abstract/FREE Full Text
  51. Halliday D., McKeran R.O. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of l-(α-15N)lysine. ClinSciMolMed, 49: 581–590, 1975. Medline
  52. Hardie D.G. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond), 32, Suppl4: S7–S12, 2008.
  53. Hartman J.W., Tang J.E., Wilkinson S.B., Tarnopolsky M.A., Lawrence R.L., Fullerton A.V., Phillips S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J ClinNutr, 86: 373–381, 2007. Abstract/FREE FullText
  54. Hasten D.L., Pak-Loduca J., Obert K.A., Yarasheski K.E. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. Am J Physiol Endocrinol Metab, 278: E620–E626, 2000. Abstract/FREE Full Text
  55. Haus J.M., Miller B.F., Carroll C.C., Weinheimer E.M., Trappe T.A. The effect of strenuous aerobic exercise on skeletal muscle myofibrillar proteolysis in humans. Scand J MedSciSports, 17: 260–266, 2007. Medline
  56. Henderson G.C., Dhatariya K., Ford G.C., Klaus K.A., Basu R., Rizza R.A., Jensen M.D., Khosla S., O'Brien P., Nair K.S. Higher muscle protein synthesis in women than men across the lifespan, and failure of androgen administration to amend age-related decrements. FASEB J, 23: 631–641, 2009. Abstract/FREE FullText
  57. Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscle. Int J SportsMed, 7: 187–204, 1986. Medline
  58. Isidori A.M., Giannetta E., Greco E.A., Gianfrilli D., Bonifacio V., Isidori A., Lenzi A., Fabbri A. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. ClinEndocrinol (Oxf), 63: 280–293, 2005. CrossRefMedline
  59. Jahn L.A., Barrett E.J., Genco M.L., Wei L., Spraggins T.A., Fryburg D.A. Tissue composition affects measures of postabsorptive human skeletal muscle metabolism: comparison across genders. J ClinEndocrinolMetab, 84: 1007–1010, 1999. Abstract/FREE FullText
  60. Jaleel A., Short K.R., Asmann Y.W., Klaus K.A., Morse D.M., Ford G.C., Nair K.S. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metab, 295: E1255–E1268, 2008. Abstract/FREE Full Text
  61. Karlsson H.K., Nilsson P.A., Nilsson J., Chibalin A.V., Zierath J.R., Blomstrand E. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab, 287: E1–E7, 2004. Abstract/FREE Full Text
  62. Kim P.L., Staron R.S., Phillips S.M. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol, 568: 283–290, 2005. Abstract/FREE FullText
  63. Kimball S.R., Farrell P.A., Jefferson L.S. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J ApplPhysiol, 93: 1168–1180, 2002. Abstract/FREE FullText
  64. Koopman R., Wagenmakers A.J., Manders R.J., Zorenc A.H., Senden J.M., Gorselink M., Keizer H.A., van Loon L.J. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab, 288: E645–E653, 2005. Abstract/FREE Full Text
  65. Kostek M.C., Chen Y.W., Cuthbertson D.J., Shi R., Fedele M.J., Esser K.A., Rennie M.J. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. PhysiolGenomics, 31: 42–52, 2007. Abstract/FREE FullText
  66. Kumar V., Selby A., Rankin D., Patel R., Atherton P., Hildebrandt W., Williams J., Smith K., Seynnes O., Hiscock N., Rennie M.J. Age-related differences in the dose-response of muscle protein synthesis to resistance exercise in young and old men. J Physiol, 587: 211–217, 2009. Abstract/FREE FullText
  1. Levenhagen D.K., Gresham J.D., Carlson M.G., Maron D.J., Borel M.J., Flakoll P.J. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab, 280: E982–E993, 2001. Abstract/FREE Full Text
  2. Louard R.J., Barrett E.J., Gelfand R.A. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. ClinSci (Lond), 79: 457–466, 1990. Medline
  3. Louard R.J., Barrett E.J., Gelfand R.A. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism, 44: 424–429, 1995. CrossRefMedline
  4. Louis M., Poortmans J.R., Francaux M., Berre J., Boisseau N., Brassine E., Cuthbertson D.J., Smith K., Babraj J.A., Waddell T., Rennie M.J. No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am J Physiol Endocrinol Metab, 285: E1089–E1094, 2003. Abstract/FREE Full Text
  5. MacDougall J.D., Gibala M.J., Tarnopolsky M.A., MacDonald J.R., Interisano S.A., Yarasheski K.E. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J ApplPhysiol, 20: 480–486, 1995. Medline
  6. MacLean D.A., Graham T.E., Saltin B. Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. Am J Physiol Endocrinol Metab, 267: E1010–E1022, 1994. Abstract/FREE Full Text
  7. MacLean D.A., Graham T.E., Saltin B. Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. J Physiol, 493: 909–922, 1996. Abstract/FREE FullText
  8. Mascher H., Andersson H., Nilsson P.A., Ekblom B., Blomstrand E. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. ActaPhysiol (Oxf), 191: 67–75, 2007. CrossRefMedline
  9. Miller B.F., Hansen M., Olesen J.L., Flyvbjerg A., Schwarz P., Babraj J.A., Smith K., Rennie M.J., Kjaer M. No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle. Am J Physiol Endocrinol Metab, 290: E163–E168, 2006. Abstract/FREE Full Text
  10. Miller B.F., Olesen J.L., Hansen M., Dossing S., Crameri R.M., Welling R.J., Langberg H., Flyvbjerg A., Kjaer M., Babraj J.A., Smith K., Rennie M.J. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol, 567: 1021–1033, 2005. Abstract/FREE FullText
  11. Miller S.L., Tipton K.D., Chinkes D.L., Wolf S.E., Wolfe R.R. Independent and combined effects of amino acids and glucose after resistance exercise. MedSciSportsExerc, 35: 449–455, 2003. CrossRefMedline
  12. Millward D.J., Jackson A.A. Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes. PublicHealthNutr, 7: 387–405, 2004. CrossRefMedline
  13. Moore D.R., Phillips S.M., Babraj J.A., Smith K., Rennie M.J. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab, 288: E1153–E1159, 2005. Abstract/FREE Full Text
  14. Moore D.R., Robinson M.J., Fry J.L., Tang J.E., Glover E.I., Wilkinson S.B., Prior T., Tarnopolsky M.A., Phillips S.M. Ingested protein dose-response of muscle and albumin prtoein synthesis after resistance exercise in young men. Am J ClinNutr, 89: 161–168, 2008. CrossRefMedline
  15. Nair K.S., Jaleel A., Asmann Y.W., Short K.R., Raghavakaimal S. Proteomic research: potential opportunities for clinical and physiological investigators. Am J Physiol Endocrinol Metab, 286: E863–E874, 2004. Abstract/FREE Full Text
  16. Parise G., Mihic S., MacLennan D., Yarasheski K.E., Tarnopolsky M.A. Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J ApplPhysiol, 91: 1041–1047, 2001. Abstract/FREE FullText
  17. Parkington J.D., LeBrasseur N.K., Siebert A.P., Fielding R.A. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J ApplPhysiol, 97: 243–248, 2004. Abstract/FREE FullText
  18. Phillips S.M., Parise G., Roy B.D., Tipton K.D., Wolfe R.R., Tamopolsky M.A. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J PhysiolPharmacol, 80: 1045–1053, 2002. CrossRefMedline
  19. Phillips S.M., Tipton K.D., Aarsland A., Wolf S.E., Wolfe R.R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab, 273: E99–E107, 1997. Abstract/FREE Full Text
  20. Phillips S.M., Tipton K.D., Ferrando A.A., Wolfe R.R. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol Endocrinol Metab, 276: E118–E124, 1999. Abstract/FREE Full Text
  21. Pikosky M.A., Gaine P.C., Martin W.F., Grabarz K.C., Ferrando A.A., Wolfe R.R., Rodriguez N.R. Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J Nutr, 136: 379–383, 2006. Abstract/FREE FullText
  22. Pilegaard H., Richter E.A. PGC-1alpha: important for exercise performance? J ApplPhysiol, 104: 1264–1265, 2008. FREE FullText
  23. Pilegaard H., Saltin B., Neufer P.D. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol, 546: 851–858, 2003. Abstract/FREE FullText
  24. Rasmussen B.B., Tipton K.D., Miller S.L., Wolf S.E., Wolfe R.R. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J ApplPhysiol, 88: 386–392, 2000. Abstract/FREE FullText
  25. Raue U., Slivka D., Jemiolo B., Hollon C., Trappe S. Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J Gerontol A Biol Sci Med Sci, 62: 1407–1412, 2007. Abstract/FREE Full Text
  26. Rennie M.J. An introduction to the use of tracers in nutrition and metabolism.ProcNutrSoc, 58: 935–944, 1999. Medline
  27. Rennie M.J., Edwards R.H., Davies C.T., Krywawych S., Halliday D., Waterlow J.C., Millward D.J. Protein and amino acid turnover during and after exercise. Biochem Soc Trans, 8: 499–501, 1980. Medline
  28. Rennie M.J., Edwards R.H., Halliday D., Matthews D.E., Wolman S.L., Millward D.J. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. ClinSci (Lond), 63: 519–523, 1982. Medline
  29. Rennie M.J., Phillips S., Smith K. Reliability of results and interpretation of measures of 3-methylhistidine in muscle interstitium as marker of muscle proteolysis. J ApplPhysiol, 105: 1380–1381, 2008. FREE FullText
  30. Rooyackers O.E., Adey D.B., Ades P.A., Nair K.S. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. ProcNatlAcadSci USA, 93: 15364–15369, 1996. Abstract/FREE FullText
  31. Rose A.J., Broholm C., Kiillerich K., Finn S.G., Proud C.G., Rider M.H., Richter E.A., Kiens B. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol, 569: 223–228, 2005. Abstract/FREE FullText
  32. Sakamoto K., Arnolds D.E., Ekberg I., Thorell A., Goodyear L.J. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. BiochemBiophysResCommun, 319: 419–425, 2004. CrossRefMedline
  33. Sakamoto K., Goodyear L.J. Invited Review: Intracellular signaling in contracting skeletal muscle. J ApplPhysiol, 93: 369–383, 2002. Abstract/FREE FullText
  34. Sheffield-Moore M., Paddon-Jones D., Sanford A.P., Rosenblatt J.I., Matlock A.G., Cree M.G., Wolfe R.R. Mixed muscle and hepatic derived plasma protein metabolism is differentially regulated in older and younger men following resistance exercise. Am J Physiol Endocrinol Metab, 288: E922–E929, 2005. Abstract/FREE Full Text
  35. Sheffield-Moore M., Yeckel C.W., Volpi E., Wolf S.E., Morio B., Chinkes D.L., Paddon-Jones D., Wolfe R.R. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab, 287: E513–E522, 2004. Abstract/FREE Full Text
  36. Short K.R., Vittone J.L., Bigelow M.L., Proctor D.N., Nair K.S. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab, 286: E92–E101, 2004. Abstract/FREE Full Text
  37. Short K.R., Vittone J.L., Bigelow M.L., Proctor D.N., Rizza R.A., Coenen-Schimke J.M., Nair K.S. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52: 1888–1896, 2003. Abstract/FREE FullText
  38. Smith G., Villareal D., Sinacore D., Shah K., Mittendorfer B. The anabolic response to exercise training is greater in older men than older women. In: APS Intersociety Meeting: The Integrative Biology of Exercise V, September 24–27, 2009, Hilton Head, SC. Bethesda, MD: Am. Physiol. Soc., 2008, p. 17.2.
  39. Smith G.I., Atherton P., Villareal D.T., Frimel T.N., Rankin D., Rennie M.J., Mittendorfer B. Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65–80 year old men and women. PLoS ONE3: e1875, 2008. CrossRefMedline
  40. Smith K., Barua J.M., Watt P.W., Scrimgeour C.M., Rennie M.J. Flooding with l-[1-13C]leucine stimulates human muscle protein incorporation of continuously infused l-[1-13C]valine. Am J Physiol Endocrinol Metab, 262: E372–E376, 1992. Abstract/FREE Full Text
  41. Smith K., Rennie M.J. The measurement of tissue protein turnover. BaillieresClinEndocrinolMetab, 10: 469–495, 1996. CrossRefMedline
  42. Tang J.E., Manolakos J.J., Kujbida G.W., Lysecki P.J., Moore D.R., Phillips S.M. Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. ApplPhysiolNutrMetab, 32: 1132–1138, 2007. CrossRefMedline
  43. Tang J.E., Perco J.G., Moore D.R., Wilkinson S.B., Phillips S.M. Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol, 294: R172–R178, 2008. Abstract/FREE Full Text
  44. Thomson D.M., Gordon S.E. Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. J ApplPhysiol, 98: 557–564, 2005. Abstract/FREE FullText
  45. Tipton K.D., Borsheim E., Wolf S.E., Sanford A.P., Wolfe R.R. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab, 284: E76–E89, 2003. Abstract/FREE Full Text
  46. Tipton K.D., Ferrando A.A., Phillips S.M., Doyle D. Jr., Wolfe R.R. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol Endocrinol Metab, 276: E628–E634, 1999. Abstract/FREE Full Text
  47. Tipton K.D., Ferrando A.A., Williams B.D., Wolfe R.R. Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. J ApplPhysiol, 81: 2034–2038, 1996. Abstract/FREE FullText
  48. Tipton K.D., Rasmussen B.B., Miller S.L., Wolf S.E., Owens-Stovall S.K., Petrini B.E., Wolfe R.R. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab, 281: E197–E206, 2001. Abstract/FREE Full Text
  49. Toth M.J., Poehlman E.T., Matthews D.E., Tchernof A., MacCoss M.J. Effects of estradiol and progesterone on body composition, protein synthesis, and lipoprotein lipase in rats. Am J Physiol Endocrinol Metab, 280: E496–E501, 2001. Abstract/FREE Full Text
  50. Urban R.J., Bodenburg Y.H., Gilkison C., Foxworth J., Coggan A.R., Wolfe R.R., Ferrando A. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol Endocrinol Metab, 269: E820–E826, 1995. Abstract/FREE Full Text
  51. Volpi E., Ferrando A.A., Yeckel C.W., Tipton K.D., Wolfe R.R. Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J ClinInvest, 101: 2000–2007, 1998. Medline
  52. Volpi E., Mittendorfer B., Rasmussen B.B., Wolfe R.R. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J ClinEndocrinolMetab, 85: 4481–4490, 2000. Abstract/FREE FullText
  53. Volpi E., Sheffield-Moore M., Rasmussen B.B., Wolfe R.R. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA, 286: 1206–1212, 2001. Abstract/FREE FullText
  54. Wagenmakers A.J. Tracers to investigate protein and amino acid metabolism in human subjects. ProcNutrSoc, 58: 987–1000, 1999. Medline
  55. Welle S., Thornton C., Jozefowicz R., Statt M. Myofibrillar protein synthesis in young and old men. Am J Physiol Endocrinol Metab, 264: E693–E698, 1993. Abstract/FREE Full Text
  56. Wilkes E., Selby A., Patel R., Rankin D., Smith K., Rennie M. Blunting of insulin-mediated proteolysis in leg muscle of elderly subjects may contribute to age-related sarcopenia (Abstract). ProcNutrSociety, 67 (OCE5): E153, 2008. CrossRef
  57. Wilkinson S.B., Phillips S.M., Atherton P.J., Patel R., Yarasheski K.E., Tarnopolsky M.A., Rennie M.J. Differential effects of resistance and endurance exercise in the fed state on signaling molecule phosphorylation and protein synthesis in human muscle. J Physiol, 586: 3701–3717, 2008. Abstract/FREE FullText
  58. Wilkinson S.B., Tarnopolsky M.A., Macdonald M.J., MacDonald J.R., Armstrong D., Phillips S.M. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J ClinNutr, 85: 1031–1040, 2007. Abstract/FREE FullText
  59. Williamson D.L., Kubica N., Kimball S.R., Jefferson L.S. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol, 573: 497–510, 2006. Abstract/FREE FullText
  60. Yang Y., Creer A., Jemiolo B., Trappe S. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J ApplPhysiol, 98: 1745–1752, 2005. Abstract/FREE FullText
  61. Yarasheski K.E. Exercise, aging, and muscle protein metabolism. J Gerontol A Biol Sci Med Sci, 58: M918–M922, 2003. Abstract/FREE FullText
  62. Yarasheski K.E., Campbell J.A., Smith K., Rennie M.J., Holloszy J.O., Bier D.M. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol Endocrinol Metab, 262: E261–E267, 1992. Abstract/FREE Full Text
  63. Yarasheski K.E., Pak-Loduca J., Hasten D.L., Obert K.A., Brown M.B., Sinacore D.R. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥76 yr old. Am J Physiol Endocrinol Metab, 277: E118–E125, 1999. Abstract/FREE Full Text
  64. Yarasheski K.E., Smith K., Rennie M.J., Bier D.M. Measurement of muscle protein fractional synthetic rate by capillary gas chromatography/combustion isotope ratio mass spectrometry. BiolMassSpectrom, 21: 486–490, 1992. CrossRefMedline
  65. Yarasheski K.E., Zachwieja J.J., Bier D.M. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol Endocrinol Metab, 265: E210–E214, 1993. Abstract/FREE Full Text
  66. Zhang X.J., Chinkes D.L., Wolfe R.R. Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am J Physiol Endocrinol Metab, 283: E753–E764, 2002. Abstract/FREE Full Text

Гипертрофия, Научные исследования, Тренировки с отягощениями, Физиология

Еще в этой категории

16.04.2017 Автор: Мирошниченко 29.03.2017 Автор: Мирошниченко 20.03.2017 Автор: kloder 16.03.2017 Автор: Мирошниченко

fitness-pro.ru

Шаги к успеху

Для успешной консультации требуется пошаговый подход, способствующий успешному совершению продажи, который нужно подстраивать под потребности каждого конкретного клиента. «Все клиенты уникальны и индивидуальны, и ваше вводное занятие должно быть полностью посвящено каждому из них», – говорит Селман. Сосредоточив внимание на клиенте, которого вы хотите привлечь, и применяя системный подход, вы будете продвигаться вперед с уверенностью, что вы заключите эту сделку.

Бизнес, Маркетинг и продажи, Персональный тренинг

fitness-pro.ru

ВИИТ vs НИПТ: адаптация ССС

Недавние исследования показали сходную и даже в чем-то превосходящую адаптацию в результате ВИИТ по сравнению с НИПТ (Helgerudetal, 2007; Wisløff, Ellingsen & Kemi, 2009). Helgerudetal продемонстрировали, что 4 серии бега по 4 минуты при 90–95 % максимальной ЧСС (ЧССмакс) с активным восстановлением в течение 3 минут при 70 % ЧССмакс, выполняемые 3 раза в неделю в течение 8 недель, привели к большему на 10 % улучшению ударного объема, чем длительные низкоинтенсивные тренировки такой же частоты, продолжительности и общего потребления кислорода.

В другом эксперименте (Slordahletal, 2004) обнаружено, что аэробная тренировка высокой интенсивности 90–95 % (VO2max) увеличивает массу левого желудочка на 12 % и сердечную сократимость на 13 % выше по сравнению с продолжительными низкоинтенсивными упражнениями.

Максимальное потребление кислорода рассматривают как верхнюю границу поглощения, распределения и использования кислорода для энергопродукции. Обычно называемое «максимальной аэробной мощностью», VO2max является хорошим показателем физической работоспособности. Улучшение функции сердечно-сосудистой системы повышает VO2max организма. Несколько исследований свидетельствуют, что ВИИТ увеличивает VO2max в большей степени, чем традиционная тренировка выносливости (НИПТ).

Daussinetal (2008) измерили изменения VO2max у женщин и мужчин вследствие 8-недельной программы тренировок ВИИТ или НИПТ. VO2max повысилось больше в случае ВИИТ программы (15 %), чем после продолжительной низкоинтенсивной нагрузки (9 %).

Улучшение функций ССС и увеличение VO2max – основные цели пациентов с заболеваниями сердечно-сосудистой системы, для достижения которых некоторые кардиологические реабилитационные центры начинают включать интервальную тренировку (Bartels, Bourne & Dwyer, 2010). Несмотря на то, что продолжительные низкоинтенсивные упражнения обеспечивают сходные улучшения, применение интервальной тренировки позволяет достигнуть их в более короткие сроки с меньшим количеством занятий.

Преданность клиентуры

Автор: admin

15.06.2011

Кей Л. Кросс,
магистр педагогики, ACC, CSCS, президент Cross Coaching & Wellness, Fort Worth, Texas. Сертифицированный преподаватель бизнеса и здорового образа жизни, Мастер персонального тренинга и лектор-педагог IDEA.

Соблюдение простых правил деловых взаимоотношений – вот, что побудит клиента придти к вам и остаться. Одним из самых красноречивых признаков стабильного успеха вашего бизнеса является постоянство клиентуры – ее приверженность программе и лояльное отношение к предоставляемым вами услугам. Поддержание конкурентоспособности бизнеса в любых экономических обстоятельствах требует квалификации и опыта, что мы рассмотрели в двух предыдущих публикациях этой серии: хорошо работающий график с эффективной логистикой и безупречное ведение учета. Эта статья посвящена третьей составляющей успеха вашего предприятия: преданности клиентуры.

Обновлено 16.03.2015 16:03

Привязался ли ваш клиент к своей программе фитнеса? Продолжает ли ваш клиент заниматься с вами через год после начала занятий? Охотно ли он возвращается к вам после перерыва в занятиях с вами? Дали ли вы ему почувствовать, что он симпатичен вам и важен? Следите ли вы внимательно за начинающим клиентом? Что будет, после того, как клиент бросит занятия?

Здесь изложено несколько советов, которые помогают приобрести хороших клиентов и удержать их после того, как они стали пользоваться вашими услугами по поддержанию здоровья и хорошего самочувствия. В идеальной ситуации ваш клиент одобряет и программу занятий, и ваше предприятие.

Спрашивайте клиента о его целях и потребностях

Может это звучит простовато, но удивительно, как редко предприниматели спрашивают своего клиента, прежде чем нагрузить его тем, что они думают насчет того, что ему нужно. Мое правило – всегда сначала спрашивать и только потом убеждать. Если клиент, которого лично я тренирую и обучаю не заполнял анкету заранее, то на первом-втором занятии я задаю ему такие вопросы:

  • К

Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.