Эксперименты с ионами лития, облучаемыми лазерами — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Эксперименты с ионами лития, облучаемыми лазерами

2023-02-07 43
Эксперименты с ионами лития, облучаемыми лазерами 0.00 из 5.00 0 оценок
Заказать работу

 

После появления лазеров они стали использоваться и в экспериментах по проверке релятивистской формулы ЭД, где результаты получались не всегда однозначными. И самые многочисленные такие эксперименты были выполнены сравнительно недавно большой группой ученых из Германии [7, 25, 26, 40, 41, 43], которые, как они считают, однозначно подтвердили справедливость релятивистской формулы для продольного ЭД.

В этих экспериментах ионы лития 7Li+, разогнанные в ускорителе, помещали в специальное кольцо сложной конфигурации длиной 55,4 м, где они вращались в вакууме по инерции, удерживаемые магнитным полем (см. левый рис. 9). Затем, на прямолинейном участке движения ионов, они облучались двумя лазерами, свет от которых подводился по оптоволокну, в попутном направлении движения пучка ионов с частотой vp и навстречу пучку с частотой va.

 

 

Рис. 9. Схема установки для трёхуровневого ДОР слева (воспроизведено из работы [25]) и схема переходов между энергетическими уровнями для двухуровневого ДОР насыщения и трёхуровневого линейного ДОР по Л-схеме справа (воспроизведено из работы [7]).

 

В возбуждённом состоянии, т.е. на верхнем уровне ионы находятся очень короткое время (43 нс), после чего происходит спонтанное излучение, т.е. обратный переход в невозбуждённое состояние на нижний метастабильный уровень, где они могут находиться около 50 с, и в этот момент перехода возникает флуоресценция (свечение, которое распространяется в произвольном направлении). Сама частота флуоресценции в эксперименте не определялась, а просто тремя датчиками PMT (фотоумножители) под углом 90 градусов к направлению движения пучка ионов фиксировалась её интенсивность (крайние датчики регистрировали излучение при воздействии на ионы одного лазера, а средний при воздействии на ионы обоих лазеров). При этом они проводили два типа экспериментов. В Хидельберге, где они разгоняли ионы ускорителем Ван де Граафа до скоростей 0,03*с и 0,064*с и затем помещали в накопитель (кольцо) TSR, они наблюдали двухуровневый двойной оптический резонанс (ДОР) в режиме насыщения, а в Дармштадте (на рис. 9 показана эта установка), где они разгоняли ионы на циклотроне до скорости 0,338*с и затем помещали в накопитель ESR, они наблюдали трехуровневый ДОР по Л-схеме. Правда, авторы пишут, что они наблюдали во втором варианте оптическо-оптический двойной резонанс, но это и есть ДОР. Бывает еще двойной резонанс радиочастотно-оптический, микроволново-оптический и инфрокрасно-оптический, но у авторов эксперимента в обоих вариантах был именно ДОР.

 

При использовании двухуровневой схемы у нас при возбуждении электронов происходит их переход с уровня s1 (F=5/2) на уровень p2 (F=7/2), как это показано на правом рис. 9, с последующим спонтанным излучением волны 548,47 нм (есть такая стандартная длина волны для иона лития [39]), т.е. с частотой v0=546,593 * 10^12 Гц при скорости света 299790 км/с). Правда, авторы, почему то, пишут, что длина волны будет 548,5 нм, т.е. с их скоростью света 299737 км/с у них получается частота v0=546,467 * 10^12 Гц, поэтому я далее буду использовать их данные. Таким образом, как пишут авторы, чтобы происходило излучение на частоте v0, надо чтобы частоты лазеров, светящего по ходу движения пучка ионов, vp=582,491 * 10^12 Гц и, светящего во встречном направлении, va=512,671 * 10^12 Гц после преобразования согласно релятивистской формуле ЭД для движущегося приемника при скорости пучка ионов 0,064*с, воздействовали на ионы в их системе отсчета с частотой v0 (назовем такую частоту лазеров эффективной частотой) и при этом возбуждали электроны, переводя их на верхний уровень. А вот при использовании трехуровневой схемы у них поглощение или излучение происходят при переходах электронов между уровнями s1 (F=5/2) <--> p2 (F=5/2) и s1 (F=3/2) <--> p2 (F=5/2) при эффективных частотах возбуждения v11=546,455 * 10^12 Гц и v22=546,475 * 10^12 Гц, которые получатся при скорости пучка ионов 0,338*с от воздействия одним лазером с длиной волны 386 нм (vp=777,210 * 10^12 Гц) по ходу движения пучка ионов и другим лазером с длиной волны 780 нм (va=384,226 * 10^12 Гц) во встречном направлении.

 

Первый вариант экспериментов называется спектроскопией насыщения, потому что ДОР наблюдается на нелинейном участке эффективности воздействия лазера, когда дальнейшее увеличение мощности лазера практически не приводит к увеличению интенсивности излучения (см. рис. 11б, где показана интенсивность излучения при работе одного лазера и двух лазеров одинаковой мощности). При этом, обычно, вещество облучают двумя лазерами во встречных направлениях (основным мощным, которым насыщают верхний энергетический уровень, и сканирующим маломощным). Скорости различных групп атомов всегда будут отличаться от скорости центральной группы (наиболее многочисленной) как в положительную так и в отрицательную стороны поэтому из-за ЭД эффективные частоты, совпадающие с частотой линии поглощения, для различных групп атомов будут различные. Таким образом, при облучении большой группы атомов различными частотами (близкими к частоте линии поглощения для скорости центральной группы атомов) мы наблюдаем доплеровски уширенную линию поглощения. И точно так же будет уширена линия при излучении атомом на одной и той же частоте, соответствующей своей естественной линия излучения (см. рис. 10в и правый на рис.12), а ширина этой линии для видимого света на два порядка шире естественной линии излучения. При этом ширина доплеровски уширенной линии (или просто ширина линии) измеряется на полувысоте ее профиля интенсивности излучения, поэтому на графиках, обычно рисуют ее спектр поглощения или излучения на интервале частот только немного шире профиля на полувысоте интенсивности излучения.

Рис. 10. а) симметричные провалы Беннета в распределении населенности нижнего уровня в случае облучения атомов вещества двумя встречными волнами, когда частота v11 не равна v22. б) Лэмбовский провал коэффициента поглощения в центре доплеровского уширенного профиля линии поглощения при v11= v22 (воспроизведено из работы [27], где используется круговая частота w). в) Изменение суммарной интенсивности излучения в эксперименте двухуровнего ДОР со скоростью ионов 0,064*с, где ширина линии получается 2,8 ГГц, при изменении частоты сканирующего лазера влево и вправо от va (воспроизведено из работы [41]).

 

А при облучении пучка ионов двумя встречными лазерами, когда их эффективные частоты совпадают с частотой линии поглощения для скорости центральной группы атомов, которая в нашем случае будет средней скоростью пучка ионов, на доплеровском профиле наблюдается провал Лэмба (см. рис. 10б и 11а). Но если эффективная частота сканирующего лазера совпадает с частотой линии поглощения для группы атомов, скорость которой отличается от скорости центральной группы атомов, то в данном случае наблюдается провал Беннета (см. рис. 10а), которых может быть два, как для группы, скорость которой больше скорости центральной группы, так и для группы со скоростью меньше центральной. Поэтому при покоящемся исследуемом веществе обычно для получения провала Лэмба используют один лазер, у которого луч расщепляют на два встречных, один из которых ослабляют, при этом эффективные частоты у обоих лучей будут совпадать точно и именно с центральной группой атомов, т.е. с той, где скорость равна нулю.

 

А судя по графику интенсивности излучения для полосы частот, чуть большей половины ширины доплеровского профиля линии излучения (см. рис. 10в), в эксперименте наблюдался не совсем провал Лэмба, а сами авторы эксперимента надеялись увидеть что-то похожее на график на рис. 11а. И хотя в эксперименте провал наблюдается не ровно по центру пика доплеровской ширины линии излучения ионов лития, а смещенным от этого пика влево, но возможно, что это действительно провал Лэмба, а расчетные частоты лазеров просто не соответствовали эффективной частоте для скорости ионов в середине пучка. Вот только, как я понял, на графике (см. рис. 10в) у нас отражена не суммарная интенсивность излучения, а за вычетом интенсивности излучения, вызванной работой основного насыщающего лазера с постоянной частотой vp, т.к. график начинается с нуля интенсивности, а должен был начинаться с интенсивности основного лазера, как показано на рис. 11а. Ведь основной лазер постоянно возбуждает электроны центральной скоростной группы ионов и датчик PMT3 должен при любой частоте сканирующего лазера, возбуждающего по очереди все скоростные группы ионов, регистрировать излучение как от основного лазера, так и вызванное работой сканирующего лазера.

 

Рис. 11. а) - теоретическая форма провала Лэмба. б) - зависимость интенсивности излучения при возбуждении атомов от мощности одного лазера или суммы мощностей двух одинаковых лазеров в режиме насыщения, т.е. на нелинейном участке характеристики (воспроизведено из работы [41]). в) интенсивность излучения ионов лития при скорости пучка 0,064*с при облучении их двумя встречными лазерами и с изменением частоты одного из них от нулевого значения (соответствующего опорной линии йода) на интервале 200 МГц, где a) арифметическая сумма интенсивностей излучения при раздельной работе двух лазеров, b) интенсивность излучения при одновременной работе двух лазеров, с) разность интенсивностей b) и a) (воспроизведено из работы [26]).

 

А вот зачем авторы этого эксперимента с ДОР насыщения вычисляют арифметическую сумму интенсивностей излучения при работе лазеров по отдельности, а затем вычитают её из суммарной интенсивности излучения при работе двух лазеров одновременно, как это мы видим на рис. 11в, и при этом мощность сканирующего лазера берут такой же, как и насыщающего, т.е. рассматривают вариант образования провала Лэмба, который возникает в самих лазерах - это вообще непонятно. Во-первых, при спектроскопии насыщения ничего вычитать не надо: и глубина, и ширина провала Лэмба измеряются непосредственно по графику b). А во-вторых, арифметически складывать интенсивности при работе лазеров по отдельности вблизи провала Лэмба нельзя, т.к. спектроскопию насыщения называют так же нелинейной оптикой. Да авторы и сами приводят график изменения интенсивности излучения с ростом мощности лазера (см. рис. 11б), правда, они здесь нарисовали, что будут параллельно работать два одинаковых лазера, как у них и было в эксперименте, но более корректно здесь по оси абсцисс отложить просто мощность одного лазера. Так вот, с ростом мощности лазера сначала линейно растет интенсивность излучения (линейная спектроскопия), как при обычном резонансе, а при приближении к зоне насыщения график становиться нелинейным и рост мощности лазера уже практически не увеличивает интенсивность излучения, т.к. заселённости верхнего и нижнего уровней становятся примерно одинаковыми.

 

Если в нашем эксперименте (при одинаковой мощности лазеров) фазы обоих лазеров для центральной скоростной группы ионов совпадают, то у нас будет небольшое увеличение интенсивности излучения, а если лазеры будут работать в противофазе, то у нас интенсивность излучения упадет до нуля, но вероятность этих обоих вариантов практически равна нулю. Поэтому всегда будет некоторое рассогласование фаз, и у нас сканирующий лазер будет за один период колебаний и немного увеличивать интенсивность излучения, когда амплитуды излучения лазеров будут суммироваться, и намного уменьшать, когда суммарная амплитуда воздействия будет уменьшаться - в результате за один период у нас немного уменьшится интенсивность излучения, что и даст провал Лэмба. И авторам эксперимента надо было просто зафиксировать этот момент, а не вычислять ширину провала, добиваясь какой-то фантастической точности в определении частоты середины провала, как будто они уточняют до восьмой значащей цифры какую-то физическую константу, например, гравитационную постоянную.

 

А их манипуляции с арифметическим сложением интенсивности излучения от двух лазеров работающих по отдельности, говорят только о том, что в этом эксперименте у них что-то было неладно. Если мы согласно их же графику (см. рис. 11б) арифметически просуммируем интенсивность излучения от работы двух лазеров одинаковой мощности, которые большей частью будут работать на линейном участке характеристики, то это даст почти двойную интенсивность излучения по сравнению с интенсивностью излучения одновременно работающих двух лазеров даже при их работе в одной фазе - а согласно их данным, арифметическая сумма интенсивностей излучения получается примерно 3900 Гц, а суммарная интенсивность при одновременной работе двух лазеров равна примерно 3600 Гц. Таким образом, я не знаю, что там за эффект наблюдали авторы этого эксперимента (вариантов тут масса), но это в любом случае не ДОР насыщения с образованием провала Лэмба. Хотя, возможно, что мощность сканирующего лазера у них, как и положено делать в таких экспериментах, была меньше мощности основного, и тогда интенсивность излучения на графиках "a" и "b" будет похожа на правду. Но, в любом случае, тут суммировать ничего не надо.

 

Более того, схема установки у них немного отличалась от той, что нарисована на рис. 9 - а именно, лучи обоих лазеров подводились к кольцу с пучком ионов по одному оптоволокну, как показано на левом рис. 12, где они входят в кольцо слева, отразившись от поворотного зеркала. Затем два луча проходили через встречный поток ионов слева направо, где отражались от правого зеркала и опять направлялись на пучок ионов в попутном направлении. Таким образом, в этом варианте эксперимента у нас на пучок ионов, кроме двух эффективных частот v0, которые получаются при воздействии сканирующего лазера с частотой va=512,671 * 10^12 Гц, светящего во встречном направлении при первом проходе пучка, и лазера накачки с частотой vp=582,491 * 10^12 Гц, светящего на пучок в попутном направлении после того, как он отразиться от правого зеркала, т.е. при втором проходе, действовали еще две эффективных частоты, которые получатся при движении луча с частотой va в попутном направлении (после отражения от зеркала) и при движении луча с частотой vpво встречном направлении при первом проходе. К тому же, совершенно не понятно почему в этом эксперименте ослабляется не луч сканирующего лазера, а луч основного лазера, т.е. лазера насыщения, который с частотой vp воздействует на ионы, сначала пройдя через весь пучок и отразившись от правого зеркала. В общем, получается очень запутанная ситуация с образованием тут провала Лэмба.

 

Рис. 12. Слева - схема части кольца TSR с расположением датчиков излучения PMT1...PMT3 (воспроизведено из работы [26]). Справа - интенсивность излучения ионов лития при скорости пучка ионов 0,338*с при облучении их одним лазером с изменением его частоты от нулевого значения соответствующего длине волны 780 нм на интервале частот чуть больше доплеровской ширины линии излучения, которая составляет здесь 1 ГГц (воспроизведено из работы [7]).

 

Теперь перейдём к трёхуровневому ДОР. На рис. 9 (справа) они привели для этого эксперимента Л-схему, а вообще-то трёхуровневые ДОР бывают и по V-схеме с общим нижним уровнем (см. рис. 13а), и по каскадной схеме с общим промежуточным уровнем (см. рис. 13б). При этом эффективные частоты в трёхуровневых ДОР могут отличаться очень сильно, т.к. назначение этих схем - возбуждение самых разнообразных уровней. Для нашего эксперимента, я думаю, лучше всего подошла бы каскадная схема, когда первый лазер с эффективной частотой v11 заселяет 2-ой уровень, а второй лазер с эффективной частотой v22 (или одновременно или с некоторой задержкой по времени) переводит электрон с этого уровня на уровень "а", где и происходит спонтанное излучение с частотой v12= v11+v22. Этой схеме эквивалентна (при одновременном облучении двумя лазерами) схема двухфотонного ДОР с реальным промежуточным уровнем "k" (см. рис. 13в), когда у нас электрон получает сразу два фотона с энергиями h*v11 и h*v22. Но можно использовать и фиктивный уровень "v" (см. рис. 13г), т.к. самое главное при двухфотонном ДОР - чтобы сумма двух эффективных частот давала энергию, необходимую для перехода на уровень "f", где будет происходить спонтанное излучение (флуоресценция), которую мы и будем фиксировать, а частота регистрации излучения датчиками будет эквивалентна интенсивности излучения.

Рис. 13. Двухуровневые схемы для двойного оптического резонанса. а) V-схема с общим нижним уровнем. б) каскадная схема. в) двухфотонная с реальным промежуточным уровнем. г) двухфотонная с фиктивным промежуточным уровнем (воспроизведено из работы [27]).

 

Таким образом, во втором эксперименте возможно, что был или каскадный ДОР, или двухфотонный ДОР, а в этом случае резонансная частота излучения будет уже v1+v2. Тогда, если справедлива релятивистская формула для ЭД, то мы получим частоту 1092,929*10^12 Гц (длина волны 274,3 нм), а если справедлива классическая формула, то мы получим частоту 1028,607*10^12 Гц (длина волны 291,454 нм). Для длины волны 274,3 нм в спектре излучения 7Li+ имеется две близкие линии 273,07 нм и 276,7 нм, а для линии 291,454 нм тоже есть близкая линия 295,27 нм [39], поэтому вполне возможно, что в эксперименте наблюдали резонанс и на этих частотах, но проверить это мы не можем, т.к. авторы эксперимента упорно отказываются измерять частоту самого излучения флуоресценции. К тому же, хотя мы и видим на левом рис. 14 всплеск интенсивности излучения при работе двух лазеров одновременно, когда на верхний уровень p2 (F=5/2) электроны закачиваются и с уровня s1 (F=3/2) и с уровня s1 (F=5/2), но мы никак не можем гарантировать, что закачка произошла именно с этих уровней и именно на уровень p2 (F=5/2). Ведь различных подуровней, как на нижнем, так и на верхнем уровне, очень много (см. правый рис. 14) и расположены уровни очень часто поэтому, даже, если мы и неправильно рассчитали частоты лазеров va и vp, то мы все равно загоним электрон с какого ни будь нижнего подуровня на какой ни будь верхний подуровень. После этого точно так же произойдет спонтанное излучение и датчики будут считать эти импульсы излучения, как ни в чем не бывало, т.к. им все равно какая была длина волны при излучении, а при совпадении суммы двух частот с одной из резонансных частот в спектре иона лития у нас добавиться и излучение от двухфотонного поглощения.

Рис. 14. Левый рисунок - изменение интенсивности спонтанного излучения (флуоресценции) при ДОР по Л-схеме, когда частота одного лазера остается постоянной, а сканирующего изменяется. А - изменение интенсивности излучения при одновременной работе двух лазеров. В - сумма двух интенсивностей при работе лазеров по одному. С- разница интенсивностей С=А-В (воспроизведено из работы [25]). Правый рисунок - часть энергетических уровней и подуровней иона лития, используемая в экспериментах двухуровнего ДОР с частотой v0 и трехуровнего ДОР с частотами v1 и v2 (воспроизведено из работы [40]).

 

Но авторы эксперимента [7] настаивают, что здесь у них не только будут рассчитанные ими эффективные частоты, но и на том, что всплеск интенсивности излучения будет потому, что эффективные частоты для левой и правой ноги Л-схемы будут качать "туда и сюда" электроны по обоим переходам для одной и той же центральной скоростной группы ионов. А вот это я совсем не понимаю, т.к. нет никакой разницы, из какой скоростной группы лазеры на разных переходах будут возбуждать электроны: нижние уровни между собою никак не связаны (даже у одной и той же скоростной группы на двух нижних уровнях будут совершенно разные электроны) и, следовательно, главное здесь - чтобы эффективная частота лазера совпала с частотой этого перехода, а для какой скоростной группы это произошло, не имеет никакого значения. Совершенно непонятно, с какого перепугу электроны начнут бегать "туда и сюда"? Туда они будут бегать, т.к. будут резонансно возбуждаться на конкретной частоте, а вот сюда возвращаться они не обязаны, т.к. при спонтанном излучении они могут спокойно улететь на любой (не запрещённый) нижний уровень.

 

При этом авторы эксперимента опять зачем-то суммируют излучение от двух лазеров при их работе по отдельности и потом из суммарной интенсивности излучения вычитают арифметическую сумму интенсивностей, как это делали и в первом варианте экспериментов. О чём это говорит и что это даёт? Только то, что здесь опять что-то неладно в датском королевстве, т.к. вследствие того, что оба лазера у нас здесь работают на линейном участке характеристики (см. рис. 11б) и работают они параллельно, т.е. с разными электронами, находящимися на разных нижних уровнях, то у нас здесь на всей ширине линии поглощения арифметическая сумма излучений при работе лазеров по отдельности должна быть в точности равна суммарному излучению при работе двух лазеров одновременно - а в эксперименте мы явно видим, что графики A и B не совпадают. Естественно, при работе этой схемы всё будет работать так, как пишут в учебниках, только если электроны будут с верхнего уровня возвращаться каждый на свой нижний уровень и при этом ещё и не будут утекать на какой-нибудь другой нижний уровень, иначе появятся нелинейности в интенсивности излучения одного или сразу двух переходов, как в режиме насыщения.

 

Но я надеюсь, что т.к. время воздействия лазеров на ионы пучка было непродолжительным, то заселенность нижних уровней за это время должна измениться незначительно, а за счёт столкновений ионов за время обращения по кольцу населённости нижних уровней опять выровняются и оба лазера всё же будут работать на линейных участках. Однако описанный мною вариант развития событий, как показывает практика, будет наблюдаться только при небольших мощностях лазеров, а тут мощность лазера с постоянной частотой была очень даже приличной (280 мВт). В этом случае возможен и другой вариант развития событий, т.е. эффект квантового пленения населённостей (КПН), или так называем «тёмный провал»: этот эффект возникает при работе по трёхуровневой Л-схеме с двумя близко расположенными нижними подуровнями, т.е. то, что и было у нас во втором эксперименте. При этом (см. левый рис. 15), если интенсивность лазеров небольшая, то у нас получается обычная доплеровски уширенная линия поглощения (кривая 1), т.е. тот вариант развития событий, что я описал выше, а с увеличением интенсивности излучения начинает образовываться «тёмный провал» (кривые 2, 3, 4):

Рис. 15. Слева - образование «тёмного провала» при фиксированной частоте одного лазера и изменении частоты сканирующего лазера, т.е. при уменьшении населенности верхнего уровня. Здесь частоты Ω1= v1-v11 и Ω2= v2 - v22 (воспроизведено из работы [42]). Справа - схема устройства для изменения скорости пучка ионов в кольце (воспроизведено из работы [43]).

 

Внятного теоретического объяснения этому явлению, как я понял, сейчас нет, т.к. объяснения в духе "возникновения непоглощающей суперпозиции состояний атома" или "особым когерентным состоянием системы, когда амплитуды вероятностей нижних состояний имеют противоположные знаки", лично мне ничего не объясняют. Да и книжное объяснение образования провала Лэмба вследствие образования стоячей волны я считаю просто смешным, поэтому выше я и дал своё объяснение этому эффекту. А вот с «тёмным провалом» я не могу дать такого простого объяснения его образования и могу только предположить, что при этом электроны начинают раскачиваться вдоль радиуса с частотой v12= v1 - v2 и это затрудняет возникновения резонанса на частотах переходов v1 и v2. Тем ни менее, это не отрицает факта того, что «тёмные провалы» реально наблюдаются в экспериментах. А вот почему мы не наблюдаем этого провала в нашем втором эксперименте, а наблюдаем наоборот всплеск интенсивности - в этом надо долго разбираться, а не делать скоропалительных выводов, как авторы наших экспериментов, которые всё что не наблюдают, объясняют мифическими эффектами даже не вникая в суть происходящего.

 

При этом расположение датчиков в этих двух экспериментах - не всех в одном месте, а разнесённых по ходу движения пучка ионов - меня вообще ставит в тупик. В этих экспериментах лучи лазеров перед попаданием в оптоволоконный кабель проходят через акустическо-оптические модуляторы (АОМ) и поэтому в кольцо с ионами подается или луч от одного лазера или луч от другого лазера или оба луча сразу или ничего на интервалах по 200 мкс в первых экспериментах и по 100 мкс во втором, поэтому и нужный датчик работает только в нужный ему интервал времени. Следовательно, даже если расположить все датчики в одном месте они будут регистрировать именно то, что им надо. При этом, если в первых экспериментах расположение датчиков не в одном месте из-за малой скорости пучка ионов не сильно скажется на нелинейности результатов работы датчиков, то при скорости 0,338*с это станет очень заметно.

 

Если предположить, что на рис. 9 эта часть установки с датчиками имеет те же размеры, что и на левом рис. 12, то расстояние от того места, где пучок ионов выходит на прямолинейный участок и начинает облучаться лазерами, до 3-го датчика, который фиксирует излучение при одновременной работе двух лазеров, составляет около 5 м. Пучок ионов проходит его за 49 нс, а расстояния до датчиков 1 и 2 примерно за 34 нс и 64 нс. А отсюда получается, что, т.к. в возбужденном состоянии электроны находятся 43 нс, то первый датчик должен вообще ничего не регистрировать, а 3-ий и 2-ой будут регистрировать излучение от электронов, которые возбуждались менее 6 нс и менее 31 нс. Естественно, при всех прочих условиях 2-ой датчик будет регистрировать больше всего импульсов и поэтому здесь возникает нелинейность в счете только от расположения датчиков. Следовательно, ничего суммировать или вычитать из показаний этих датчиков, как делали авторы эксперимента, нельзя и по этой причине. В общем, здесь по графикам A и B очень большой вопрос.

 

Таким образом, мы видим, что вопросов только по спектроскопии, как к первому варианту экспериментов, так и ко второму, накопилось очень много, и поэтому меня удивляет, как авторы этих экспериментов, у которых должны были возникнуть те же вопросы, не выяснив причину расхождения наблюдаемых явлений тому, что обычно наблюдают при проведении подобных экспериментов, решились утверждать, что их эксперименты подтверждают релятивистскую формулу для ЭД. И, в связи с возникшими вопросами, меня просто удивляет то, что ни один из почти 20 соавторов эксперимента, так и не додумался за все 10 лет измерить частоту излучения флуоресценции. Ведь полученные ими результаты вполне могли получиться и при неправильном расчете частот лазеров и при неправильном определении скорости пучка ионов или при возникновении и двухфотонного резонанса, а измеренная длина волны излучения (или нескольких разных, которые могли быть в этих экспериментах) заставила бы их сразу задуматься о том, почему получилось именно так. Или возможно, что, если бы авторы провели вторые эксперименты и со скоростью 0,45*с (как я понял, установка позволяет это сделать), то они получили бы результаты, которые бы тоже заставили их задуматься, но и этого не было сделано. И потом, почему мы не видим результата, который бы наблюдался при расчете частот лазеров по классическому ЭД. Возможно, что и в этом случае они наблюдали бы похожую картину и задумались бы, наконец-то, над теорией и методикой проведения своих экспериментов.

 

А вот то, как в экспериментах определялась скорость пучка ионов - это очень даже интересно. Дело в том, что при больших скоростях ионов вычислять эту скорость по затраченной на разгон энергии нельзя, т.к. КПД ускорителей при таких скоростях будет явно меньше 100%. И если при разгоне ионов до скорости 0,064*с они затрачивали в ускорителе Ван де Граафа энергию 13,3 МэВ, что при массе ионов 11,7196*10^-27 кг по формуле V=sqrt(2*E/m) дает 0,0636*с, т.е. КПД получается примерно 100%, то при разгоне до скорости 0,338*с это будет не так. Они затрачивали при разгоне ионов на циклотроне 58,6 МэВ на нуклон, что по той же формуле при семи нуклонах у 7Li+ даст скорость 0,353*с, что заметно больше получившейся у них скорости 0,338*с, поэтому скорость надо было определять при эксперименте непосредственно пролетным методом. Тем более что установка позволяет это сделать (имеются большие прямолинейные участки кольца). И как же авторы эксперимента определили, что у них была скорость именно 0,338*с, если им неизвестен КПД ускорителя и они не замеряли скорость пролетным методом? А делалось это так. После того, как ионы впрыскивались в кольцо, они в течение 7...20 с охлаждались в электронном охладителе, где обдувались электронами, чтобы уменьшить разброс скоростей ионов в пучке и уменьшить ширину линии, а потом на две пластины (см. правый рис. 15) в этом же охладителе подавалось напряжение (на 3-ей гармонике предполагаемой частоты обращения ионов по кольцу TSR и на 10-ой гармонике для кольца ESR), которое изменяло скорость ионов в кольце. И в тот момент, когда при работе лазера с постоянной частотой vpнаблюдалась флуоресценция, напряжение отключали, т.к. считали что скорость пучка достигла 0,338*с, при которой эффективная частота согласно расчету по релятивистской формуле для ЭД как раз и возбуждала переход, который был нужен в эксперименте [7]. Получается, что авторы эксперимента определяют скорость пучка ионов по релятивистской формуле ЭД, а потом доказывают экспериментально для ЭД справедливость этой релятивистской формулы, что, мягко говоря, некорректно. Таким образом, т.к. неизвестно, на какой переход при этом попали авторы эксперимента, то определение таким образом скорости пучка становиться неоднозначным, а, если справедлива формула для классического ЭД, то скорость получается совершенно неопределённой и вариантов развития событий в этом эксперименте становиться очень много. Поэтому даже если с теоретической точки зрения авторы эксперимента делали всё так, как их учили, то всё равно надо было после этих манипуляций скорость измерять непосредственно. Тем более, как я понял, они не очень-то и теоретически вычисляли частоту обращения ионов по кольцу, т.к. в работе [26] приводится длина кольца TSR 55,4 м, а в работе [41] - ровно 55м. К тому же они ничего не пишут, как при этом определялась нужная напряженность магнитного поля на поворотах кольца, чтобы ионы двигались точно по радиусу закругления, если им при разгоне была неизвестна скорость пучка ионов. В общем, и со скоростью пучка ионов опять возникает очень большой вопрос.

 

Да и вообще, сам ДОР - это очень сложное явление, где при похожих условиях проведения эксперимента возможны различные варианты развития событий, которые можно ошибочно отождествить с нужным вариантом. К тому же ионы лития у них облучались лучами лазеров в начале прямолинейного участка и в его конце, находясь в магнитном поле, где в полученный результат могли вмешаться и магнитные резонансы и эффект Зеемана. Поэтому я считаю, что при проведённых ими экспериментах надо было не мудрить с ДОР, а просто фиксировать длину волны излучения при разных скоростях и углах наблюдения, а для возбуждения ионов использовать только один лазер. Ведь резонансная частота конкретной линии излучения строго определена только при излучении, а поглощение может происходить в очень широком диапазоне частот вблизи этой резонансной частоты. К тому же авторы экспериментов во всех статьях так и пишут, что они проводят эксперименты по типу Айвса и К - вот и проводили бы они их в этом духе, где у Айвса и К, также как и у Победоносцева и К, наблюдалась именно длина волны, испущенная ионами водорода. Следовательно, и им надо было наблюдать изменение длины волны излучения при разных скоростях пучка ионов и разных углах наблюдения, а не только при двух фиксированных углах, как это было у Айвса и К (примерно 7 и 173 градуса) и у Победоносцева и К (77 и 103 градуса).

 

К тому же у Айвса и К было большой проблемой, что соседние линии излучения водорода наползали на исследуемую им линию излучения иона водорода, а у них здесь будет только линия 548,5 нм, которая не только одна из самых ярких и расположена далеко от соседних линий (ближайшие 958,14 нм и 503,78 нм) но и возбуждение на этой длине волны у них в эксперименте осуществляется очень легко. А вообще-то, ионы надо было бы использовать в этом случае какой ни будь фракции со стабильным нижним уровнем, чтобы не приходилось через каждые 50 с впрыскивать в кольцо новую порцию ионов, т.к. время жизни электронов на метастабильном уровне 3S1, после которого электроны покидали этот уровень и без возбуждения, как раз и есть 50 с. А, если учесть, что для того, чтобы получить хорошую яркость линии излучения в спектроскопе, обычно требуется несколько часов, то эксперименты с метастабильным уровнем 3S1 станут очень затратными. К тому же, концентрация фракции ионов с метастабильным уровнем 3S1, после получения их на пеннинговском генераторе составляла у них всего 1% и то, как показал эксперимент на правом рис. 12, концентрация в этом случае была только 0,1% (такой вывод авторы сделали, наверное, по наблюдаемой интенсивности излучения). А в первых экспериментах концентрация таких ионов в пучке была 10%, но здесь, как пишут авторы экспериментов, фракция метастабильных ионов была увеличена в процессе отгонки в ускорителе, но это опять дополнительные затраты.

 

Таким образом, когда германские ученые грамотно выполнят предлагаемые мною эксперименты со смещением известной линии излучения, а не с возбуждением неизвестно каких линий поглощения, тогда их результаты будут интерпретироваться однозначно и можно будет что-то утверждать. А так авторы экспериментов провели кучу сложнейших экспериментов, научная ценность которых очень сомнительна, хотя они, несмотря на все их ошибки в методике проведения эксперимента, что-то там и наблюдали. А вот как раз объяснить то, что же там авторы этих экспериментов наблюдали, без дополнительной информации очень сложно (да и вряд ли при наших познаниях о процессах поглощения и излучения вообще возможно сделать это однозначно), но давайте попробуем это сделать хотя бы в общих чертах, если справедлива классическая формула для ЭД. При этом будем считать, что некоторое отличие частот внешнего воздействия от резонансной частоты вполне допустимо, если мы рассматриваем именно резонанс, а не прыжки электронов с одного энергетического уровня на другой. Ведь резонанс - это растянутый во времени процесс, где амплитуда колебаний или возрастает (при возбуждении электрона) или убывает (при излучении, когда колебания затухают) со временем постепенно. При этом круговые частоты этих колебаний электронов вдоль радиуса их орбиты определятся по формуле w=sqrt(kF/m), где kF - это жёсткость силовой функции на конкретной орбите. Ещё есть режим, близкий к резонансному, т.е. режим биений, когда частота внешнего воздействия может отличаться от собственной частоты колебаний электронов на 5 и более процентов, но мы и при биениях получим хорошую амплитуду возбуждения электронов на их резонансной частоте. При этом не надо забывать и о том, что резонанс может возникнуть и когда частота внешнего воздействия является одной из низших гармоник резонансной частоты - например, равна 1/2 или 1/4, поэтому колебания с резонансной частотой могут возникнуть и при частоте внешнего воздействия, меньшей этой частоты. Таким образом, вполне возможно, что авторы этого эксперимента и наблюдали эффекты, которые должны были происходить в этом эксперименте, но если справедлива классическая формула для ЭД. Например, если к частотам vp и va во втором эксперименте применить классическую формулу для ЭД, то мы получим одинаковые значения эффективных частот при скорости только чуть-чуть больше 0,338*с, а именно при скорости 0,33836*с, (на рис. 16 это пересечение графиков эффективных частот лазеров (светло-зеленая и синяя линии) именно в точке 0,3384*с, которая найдена с точностью построения графиков, а при аналитическом решении будет точно 0,338*с).


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.062 с.