
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Техника безопасности при работе на пароконвектомате: К обслуживанию пароконвектомата допускаются лица, прошедшие технический минимум по эксплуатации оборудования...
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Интересное:
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Если фигура ограничена кривой, заданной параметрическими уравнениями, то площадь вычисляется по формуле:
Пример. Вычислить площадь эллипса, заданного параметрическими уравнениями: .
Решение. Дан эллипс с полуосями: большая — , малая —
. Сделаем чертеж к задаче (рис.4).
Рис. 4
В силу симметричности фигуры вычислим площади. Найдем пределы интегрирования:
так как , то
;
.
.
.
Следовательно, площадь (кв.ед.).
Задание 12. Вычисление площади плоской фигуры, ограниченной линиями, заданными в полярных координатах.
В полярной системе координат элементарной фигурой является криволинейный сектор (рис.5), площадь которого вычисляется по формуле:
Рис. 5
Пример. Найти площадь фигуры, ограниченной линией
Решение. Так как определяет расстояние до соответствующей точки, то
. Следовательно, область определения функции определяется неравенством
. Общее решение этого неравенства имеет вид:
где
.
Отсюда
. Так как в полярной системе координат выполняются ограничения на область изменения
, то область допустимых значений функции
в полярной системе координат состоит из трех промежутков, описывающихся соответствующими неравенствами:
Выбрав несколько значений из указанных промежутков, построим график функции (рис. 6).
Рис.6
В силу симметричности фигуры вычислим площади, где полярный угол
.
.
Следовательно, площадь всей фигуры (кв.ед.).
Задание 13. Вычисление длины дуги кривой, заданной параметрическими уравнениями.
Длина дуги кривой, заданной параметрическими уравнениями, вычисляется по формуле:
.
Замечание. При вычислении длины кривой, заданной параметрическими уравнениями, нижний предел интегрирования должен быть меньше верхнего предела интегрирования.
Пример. Вычислить длину дуги астроиды, заданной уравнениями:
.
Решение.
Вычислим производные функций:
.
Вычислим подынтегральную функцию:
.
.
Следовательно, длина дуги (ед.).
Задание 14. Вычисление объема тела, образованного вращением фигуры, ограниченной линиями в декартовых координатах.
Пусть дана криволинейная трапеция, ограниченная линиями ,
,
,
, где
- непрерывная функция. Если ее вращать вокруг оси абсцисс, то получим тело вращения (рис.7), объем которого вычисляется по формуле:
Рис.7
Если криволинейную трапецию, ограниченную линиями ,
,
,
, где
- непрерывная функция, вращать вокруг оси ординат, то получим тело вращения (рис.8), объем которого вычисляется по формуле:
Рис.8
Пусть дана криволинейная трапеция, ограниченная линиями ,
,
,
, где
(рис.9), то объем полученного тела вращения вычисляется по формуле:
.
Рис.9
Пример. Криволинейная трапеция, ограниченная осью абсцисс и кривой вращается вокруг оси
. Найти объем полученного тела вращения.
Решение. На рис.10 изображена криволинейная трапеция, которая вращается вокруг оси .
Рис.10
Точки пересечения кривой с осью
:
.
Следовательно, пределы интегрирования: .
Искомый объем тела вращения:
(куб.ед.).
Пример. Криволинейная трапеция, ограниченная осью ординат и кривой вращается вокруг оси
. Найти объем полученного тела вращения.
Решение. На рис.11 изображена криволинейная трапеция, которая вращается вокруг оси .
Рис.11
Кривая — это парабола с вершиной (-4;2), которая пересекает ось ординат в точках
Следовательно, пределы интегрирования: .
Искомый объем тела вращения:
(куб. ед.).
Пример. Фигура, ограниченная линиями и
,вращается вокруг
. Найти объем полученного тела вращения.
Решение. На рис.12 изображена фигура, которая вращается вокруг оси .
Рис.12
Точки пересечения параболы и прямой
.
Следовательно, пределы интегрирования: .
Искомый объем тела вращения вычислим по формуле:
.
(куб. ед.).
|
|
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!