Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Топ:
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Интересное:
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Дисциплины:
2024-01-17 | 147 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Пусть — рациональная функция своих аргументов.
1) Интегралы вида , где m и n - целые числа.
Рассмотрим два случая:
а) Среди чисел m, n есть хотя бы одно нечетное. Тогда отделяем от нечетной степени один сомножитель и выражаем с помощью формулы оставшуюся функцию в четной степени. Вводим новую переменную и приходим к табличному интегралу.
Пример. .
Решение.
.
б) Оба числа m, n- четные неотрицательные.
Применим формулы:
.
Пример. .
Решение.
.
2) Интегралы вида , где и входят в подынтегральную рациональную функцию, только в четных степенях.
Делается замена: .
При этом .
Пример. .
Решение.
.
3) Интегралы вида , где и входят в подынтегральную рациональную функцию в нечетных степенях.
Делается универсальная тригонометрическая подстановка: . В результате сводится к интегралу от рациональной дроби.
При этом .
Пример. .
Решение.
.
Приводим к общему знаменателю подынтегральную функцию. А поскольку дроби равны и их знаменатели равны, то равны и числители:
.
Два многочлена равны, когда равны коэффициенты при соответствующих степенях:
.
Получаем:
.
|
|
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!