Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Топ:
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Интересное:
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
2024-01-17 | 162 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Выражения вида ; , где а - вещественное, k,l - натуральные числа, а квадратный трехчлен не имеет действительных корней, назовем простейшими сомножителями.
Известна основная теорема алгебры: любой многочлен степени n можно разложить в произведение простейших сомножителей:
,
где - число; .
Дроби вида , где k, l - натуральные числа, - простейший сомножитель, будем называть простейшими рациональными дробями.
Дробь называется правильной, если (m и nстепени многочленов, стоящих в числителе и в знаменателе, соответственно). Если , дробь называется неправильной.
Каждую неправильную дробь можно представить в виде суммы многочлена и правильной дроби: .
Теорема. Любая правильная рациональная дробь может быть представлена в виде суммы простейших рациональных дробей.
Эта сумма строится следующим образом в два этапа:
1) каждый простейший множитель вида порождает следующую сумму из слагаемых:
;
2) каждый сомножитель вида порождает следующую сумму из слагаемых:
.
В результате мы получим следующее разложение правильной дроби на простейшие:
.
Пример. Разложить дробь на простейшие дроби.
Решение. Так как дробь является неправильной, то сначала выделим целую часть (для этого достаточно найти частное и остаток от деления числителя на знаменатель):
.
Разложим знаменатель на простейшие сомножители:
.
Тогда
;
.
Две дроби, имеющие одинаковые знаменатели, равны, значит равны их числители:
.
Два многочлена тождественно равны тогда, когда у них совпадают коэффициенты при одинаковых степенях , следовательно, можно записать следующую систему уравнений:
.
Решая ее, находим: .
Окончательно получим: .
Из разложения следует, что интегрирование правильных рациональных дробей сводится к интегрированию простейших дробей.
Интегрирование простейших дробей:
I. ;
II. ;
III. .
Этот интеграл вычисляется методом выделения полного квадрата.
IV. , квадратный трехчлен не имеет действительных корней.
Первый интеграл берётся заменой:
,
второй интеграл вычисляется по формуле:
В результате получили формулу, в которой подынтегральное выражение имеет степень на единицу меньше. К нему вновь применяем ту же формулу пока не получим в знаменателе степень равную единице.
Пример. .
Решение. Подынтегральная дробь является правильной, так как степень многочлена в числителе меньше, чем в знаменателе. Разложим подынтегральное выражение на простейшие дроби:
.
Составим систему уравнений для нахождения неизвестных коэффициентов:
|
.
Отсюда .
Следовательно, .
Теперь вычислим исходный интеграл:
.
Пример. .
Решение. Сначала разложим дробь на простейшие:
.
.
.
Решая систему, получим: .
Тогда исходный интеграл примет вид:
.
Пример. .
Решение. Так как дробь является неправильной, то сначала выделим целую часть. В результате получим:
.
Теперь вычислим интеграл:
.
Пример. .
Решение. Подынтегральная дробь является правильной, так как степень многочлена в числителе меньше, чем в знаменателе. Разложим дробь на простейшие:
.
.
.
Решая систему, получим: .
Тогда исходный интеграл примет вид:
.
|
|
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!