Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Топ:
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Интересное:
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Если
— некоторая первообразная функции
, непрерывной на отрезке
, то определенный интеграл вычисляется по формуле Ньютона – Лейбница:
.
Пример.
.
Решение.
.
Задание 8. Замена переменной.
Пусть выполняются следующие условия:
1) функция
непрерывна на отрезке
;
2) функция
непрерывна вместе со своей производной
на отрезке
;
3)
,
;
4) функция
определена и непрерывна на отрезке
.
Тогда
.
Пример.
.
Решение.

.
Задание 9. Интегрирование по частям.
Определенный интеграл по частям вычисляется по формуле:
,
где
— непрерывно дифференцируемые функции на отрезке
. Случаи, в которых следует применять интегрирование по частям, такие же, как в неопределенном интеграле.
Пример.
.
Решение.


.
Задание 10. Вычисление площади плоской фигуры, ограниченной линиями, заданными в декартовых координатах.
В декартовой системе координат элементарной фигурой является криволинейная трапеция (рис.1), ограниченная линиями
,
,
,
, площадь которой вычисляется по формуле:


Рис.1
Площадь фигуры (рис.2) вычисляется по формуле:


Рис.2
Пример. Найти площадь фигуры, ограниченной линиями 
Решение. Построим чертеж к задаче (рис. 3).
— это парабола (ветви направлены вверх, вершина находится в точке с координатами (0;-2));
— прямая, проходящая через начало координат.
Найдем точки пересечения кривых. Для этого решим систему уравнений:
.
Отсюда 
Площадь фигуры вычислим по формуле:

(кв.ед.).

Рис. 3
|
|
|
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!