Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Топ:
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Генеалогическое древо Султанов Османской империи: Османские правители, вначале, будучи еще бейлербеями Анатолии, женились на дочерях византийских императоров...
Интересное:
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
2024-01-17 | 124 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Если — некоторая первообразная функции , непрерывной на отрезке , то определенный интеграл вычисляется по формуле Ньютона – Лейбница:
.
Пример. .
Решение.
.
Задание 8. Замена переменной.
Пусть выполняются следующие условия:
1) функция непрерывна на отрезке ;
2) функция непрерывна вместе со своей производной на отрезке ;
3) , ;
4) функция определена и непрерывна на отрезке .
Тогда .
Пример. .
Решение.
.
Задание 9. Интегрирование по частям.
Определенный интеграл по частям вычисляется по формуле:
,
где — непрерывно дифференцируемые функции на отрезке . Случаи, в которых следует применять интегрирование по частям, такие же, как в неопределенном интеграле.
Пример. .
Решение.
.
Задание 10. Вычисление площади плоской фигуры, ограниченной линиями, заданными в декартовых координатах.
В декартовой системе координат элементарной фигурой является криволинейная трапеция (рис.1), ограниченная линиями , , , , площадь которой вычисляется по формуле:
Рис.1
Площадь фигуры (рис.2) вычисляется по формуле:
Рис.2
Пример. Найти площадь фигуры, ограниченной линиями
Решение. Построим чертеж к задаче (рис. 3).
— это парабола (ветви направлены вверх, вершина находится в точке с координатами (0;-2));
— прямая, проходящая через начало координат.
Найдем точки пересечения кривых. Для этого решим систему уравнений: .
Отсюда
Площадь фигуры вычислим по формуле:
(кв.ед.).
Рис. 3
|
|
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!