Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Топ:
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Генеалогическое древо Султанов Османской империи: Османские правители, вначале, будучи еще бейлербеями Анатолии, женились на дочерях византийских императоров...
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Интересное:
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Если
— некоторая первообразная функции
, непрерывной на отрезке
, то определенный интеграл вычисляется по формуле Ньютона – Лейбница:
.
Пример.
.
Решение.
.
Задание 8. Замена переменной.
Пусть выполняются следующие условия:
1) функция
непрерывна на отрезке
;
2) функция
непрерывна вместе со своей производной
на отрезке
;
3)
,
;
4) функция
определена и непрерывна на отрезке
.
Тогда
.
Пример.
.
Решение.

.
Задание 9. Интегрирование по частям.
Определенный интеграл по частям вычисляется по формуле:
,
где
— непрерывно дифференцируемые функции на отрезке
. Случаи, в которых следует применять интегрирование по частям, такие же, как в неопределенном интеграле.
Пример.
.
Решение.


.
Задание 10. Вычисление площади плоской фигуры, ограниченной линиями, заданными в декартовых координатах.
В декартовой системе координат элементарной фигурой является криволинейная трапеция (рис.1), ограниченная линиями
,
,
,
, площадь которой вычисляется по формуле:


Рис.1
Площадь фигуры (рис.2) вычисляется по формуле:


Рис.2
Пример. Найти площадь фигуры, ограниченной линиями 
Решение. Построим чертеж к задаче (рис. 3).
— это парабола (ветви направлены вверх, вершина находится в точке с координатами (0;-2));
— прямая, проходящая через начало координат.
Найдем точки пересечения кривых. Для этого решим систему уравнений:
.
Отсюда 
Площадь фигуры вычислим по формуле:

(кв.ед.).

Рис. 3
|
|
|
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
© cyberpedia.su 2017-2026 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!