
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Топ:
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Интересное:
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Если — некоторая первообразная функции
, непрерывной на отрезке
, то определенный интеграл вычисляется по формуле Ньютона – Лейбница:
.
Пример. .
Решение.
.
Задание 8. Замена переменной.
Пусть выполняются следующие условия:
1) функция непрерывна на отрезке
;
2) функция непрерывна вместе со своей производной
на отрезке
;
3) ,
;
4) функция определена и непрерывна на отрезке
.
Тогда .
Пример. .
Решение.
.
Задание 9. Интегрирование по частям.
Определенный интеграл по частям вычисляется по формуле:
,
где — непрерывно дифференцируемые функции на отрезке
. Случаи, в которых следует применять интегрирование по частям, такие же, как в неопределенном интеграле.
Пример. .
Решение.
.
Задание 10. Вычисление площади плоской фигуры, ограниченной линиями, заданными в декартовых координатах.
В декартовой системе координат элементарной фигурой является криволинейная трапеция (рис.1), ограниченная линиями ,
,
,
, площадь которой вычисляется по формуле:
Рис.1
Площадь фигуры (рис.2) вычисляется по формуле:
Рис.2
Пример. Найти площадь фигуры, ограниченной линиями
Решение. Построим чертеж к задаче (рис. 3).
— это парабола (ветви направлены вверх, вершина находится в точке с координатами (0;-2));
— прямая, проходящая через начало координат.
Найдем точки пересечения кривых. Для этого решим систему уравнений: .
Отсюда
Площадь фигуры вычислим по формуле:
(кв.ед.).
Рис. 3
|
|
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!