Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Топ:
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Интересное:
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
2017-06-25 | 363 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
РАЦИОНАЛЬНЫМИ ЧИСЛАМИ
Объект исследования: вещественное число .
Результаты, полученные лично автором: произведен поиск многочленов для определения оценки меры иррациональности .
Мерой иррациональности вещественного числа называется нижняя грань множества чисел , для которых, начиная с некоторого положительного , выполняется неравенство
В 2007 г. К. Ву получил результат оценки меры иррациональности числа
где
Из данного неравенства при следует оценка
Целью исследования является улучшение последней оценки и усовершенствования алгоритма вычисления оценки меры иррациональности. При использовании нового подхода интегральная конструкция основывается на симметризованных многочленах. Некоторые из них были вычислены с помощью программы, реализованной на языке C++ с использованием библиотеки для работы с большими числами NTL.
Искомые квадратичные многочлены имеют следующий вид:
где
Для оптимизации перебора коэффициентов многочленов используются ограничения значений показателей, проверка принадлежности корней требуемым отрезкам и отсечение части диапазона поиска. Вычисления осуществляются в параллельном режиме.
В результате выполнения программы и анализа выходных наборов значений были выделены многочлены, подходящие по условиям задачи. Добавление их в общую конструкцию позволило получить новую оценку меры иррациональности, которая составила
Материал поступил в редколлегию 27.04.2017
УДК 511.36
А.В. Волкова
Научный руководитель: доцент кафедры «Высшая математика»,
к. ф.-м. н. Е.С. Золотухина
ПОЛУЧЕНИЕ ПРЕДСТАВЛЕНИЯ ИНТЕГРАЛА В ВИДЕ ЛИНЕЙНОЙ ФОРМЫ ОТ 1 И С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ
|
Объект исследования: симметризованный интеграл.
Результаты, полученные лично автором: получено представление интеграла в виде линейной формы от 1 и с целыми коэффициентами.
В последние годы был улучшен ряд важных оценок мер иррациональности значений некоторых действительных чисел. Доказательства этих результатов чаще всего используют интегральные конструкции, дающие малые линейные формы от логарифмов и других чисел. Большой интерес представляют симметризованные интегралы.
Цель работы – получить представление симметризованного интеграла в виде линейной формы от 1 и с целыми коэффициентами.
Рассмотрим интеграл
, (1)
где N, .
Подынтегральная функция обладает свойством симметрии
,
ввиду которого справедливо следующее разложение в сумму простейших дробей
,
где , Z, ,
.
Впервые подобный по структуре интеграл был использован В.Х. Салиховым для улучшения оценки меры иррациональности числа .
Пусть далее для N.
Коэффициенты разложения можно определить в следующей лемме.
Лемма 1. Для всех справедливо представление
, Z.
Используя лемму 1, интеграл можно представить в виде линейной формы от 1 и с целыми коэффициентами.
Лемма 2. Справедливо представление вида
, где Z. (3)
С помощью представления (3) может быть получена оценка меры иррациональности числа .
Материал поступил в редколлегию 17.04.17
УДК 519.2
А.Ю. Волкова, Ю.О. Савраскина
Научный руководитель: ассистент кафедры «Высшая математика»,
А.О. Алейникова
|
|
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!