Дать определение и назвать характеристики следующих видов остойчивости «поперечная», «начальная», «при больших углах крена», «статическая», «динамическая», «аварийная». — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Дать определение и назвать характеристики следующих видов остойчивости «поперечная», «начальная», «при больших углах крена», «статическая», «динамическая», «аварийная».

2017-06-12 615
Дать определение и назвать характеристики следующих видов остойчивости «поперечная», «начальная», «при больших углах крена», «статическая», «динамическая», «аварийная». 0.00 из 5.00 0 оценок
Заказать работу

Если тело находиться в положении равновесия и при малом отклонении возвращается в свое первоначальное положение, то такое равновесие называется устойчивым. Если при малом отклонении тело остается в том положении; в какое его отклонили, то равновесие будет безразличным. Наконец, если при малом отклонении тело будет стремиться еще больше отклониться от своего первоначального положения, то равновесие будет неустойчивым.

В статике судна применительно к равновесию плавающего судна в условиях возможного воздействия на него внешних моментов известное в механике свойство статической устойчивости принято называть статической остойчивостью или просто остойчивостью.

Таким образом остойчивость можно определить как способность судна. отклоненного внешним моментом в вертикальной плоскости от положения равновесия, возвращаться в исходное положение равновесия после устранения момента, вызвавшего отклонение.

Приведенное выше определение показывает, что остойчивость судна тесно связана с его равновесием и служит характеристикой последнего. Судно считается остойчивым, если его равновесие устойчиво, и неостойчивым, если его равновесие неустойчиво или безразлично.

Изучая остойчивость судна, различают остойчивосгь на малых углах наклонения, или начальную остойчивость, и остойчивость на больших углах наклонения. Это вызвано тем, что при оценке начальной остойчивости имеется возможность принять ряд допущений и получить простые приближенные математические зависимости, тогда как задачи, связанные с остойчивостью на больших углах наклонения; могут быть решены только графическим путем.

При анализе остойчивости судна рассматривают его наклонения в двух взаимно перпендикулярных плоскостях-поперечной и продольной. Наклонения в поперечной вертикальной плоскости, характеризуемые углами крена, связаны о поперечной остойчивостью судна, а наклонения в продольной плоскости, определяемые углами дифферента, с продольной остойчивостью судна.

Изучение остойчивости судна производят в условиях его вертикального равновесия. Таким образом, предполагается, что объемное водоизмещение судна при его наклонениях остается неизменным в силу неизменности водоизмещения судна Д и плотности забортной воды р. Наклонения, при которых подводный объем судна не изменяется, называют равнобъёмными наклонениями, а ватерлинии, отсекающие одинаковые подводные объемы до и после наклонения, называют равнобъёмными ватерлиниями.

 

Аварийная остойчивость - остойчивость судна во время авариии, в частности при затоплении отсека.

Статическая остойчивость - остойчивость судна, при медленном (статическом) приложении момента внешних сил.

 

Динамическая остойчивость - остойчивость судна, при внезапном приложении момента внешних сил.

Для характеристики остойчивости можно использовать следующие хар-ки: h -поперечная метацентрическая высота, Н - продольная метацентрическая высота, координаты центра тяжести и метацентра, продольный и поперечный углы крена y и Q величины продольного и поперечного метацентрического радиуса R и r.

 

Для описания остойчивости на больших углах крена рассмотрим случай, когда при наклонений судна на большой угол теорема Эйлера недействительна и ось наклонения уже непроходит через ЦТ площади начальной ватерлинии, отвечающей прямому положению судна. Кроме того кривая ССQ уже не может считатьтся дугою круга (рис 2.21); аналитического выражения она не имеет, и форма ее зависит от обводов корпуса судна. В общем случае поперечный метацентр mQ выходит из ДП и его положение определяется метацентрическим радиусом

,

где lXQ - центральный момент инерции площади наклонной ватерлинии ВЛ относительно ее продольной оси.

Если из ЦВ опустить перпендикуляр CN на линию действия силы плавучести в его наклонном положении, то плечо остойчивости можно представить как разность:

Отрезок lф называют плечом остойчивости формы, т. к при данных водоизмещении и угле крена его значение зависит только от координат ЦВ, определяемых формой подводного объема. Отрезок sin 0 называют плечом остойчивости веса. так как при данном угле крена его величина зависит только от возвышения ЦТ над ЦВ. Соответственно момент Мф = Рlф называют моментом остойчивости формы, а момент Мф = Рlф = P*а*sinQ - моментом остойчивости веса.

Иногда в качестве плеча остойчивости формы lфэ принимают перпендикуляр ER. опущенный на линию действия силы плавучести из полюса Е, расположенного неподвижно в ДП судна. Тогда плечо остойчивости веса равно , а плечо статической остойчивости:

Рассмотренное выше разделение плеча остойчивости на две части имеет целью выделение той его части (плеча веса), которая зависит от данного состояния нагрузки судна и, следовательно, может быть определена только на судне после его погрузки. Оставшаяся же часть (плечо формы) может быть рассчитано заранее в функции водоизмещения и угла крена, а результаты такого расчета могут быть выданы на судно в виде соответствующих графиков.

 

Методы расчёта и построения Диаграммы Статической Отстойчивости. Требования к ДСО.

Кривую, выражающую зависимость плеча статической остойчивости l или восстанавливающего момента mb = Pl от угла крена Q называют диаграммой статической остойчивости или диаграммой Рида по имени английского корабельного инженера, впервые предложившего ее для оценки остойчивости судна на больших углах крена. По оси абсцисс диаграммы откладывают значения угла крена:

п
Рис. 2.21. Наклонение судна на большой угол

Рис. 2.22. Диаграмма статической остойчивости
оложительные (на правый борт) вправо и отрицательные (на левый борт) влево от начала координат, а по оси ординат - значение плеча остойчивости или восстанавливающего момента (рис. 2.22). Поскольку диаграмму остойчивости строят для некоторого определенного водоизмещения судна, между плечом остойчивости и восстанавливающим моментом существует прямая пропорциональная зависимость и, следовательно, одна и та же кривая может служить одновременно диаграммой моментов и диаграммой плеч остойчивости - изменяется только масштаб ее ординат. В таких случаях говорят, что диаграмма остойчивости построена „в плечах" или „в моментах". В силу симметрии судна относительно ДП обычно ограничиваются построением только одной половины диаграммы остойчивости для положительных значений угла крена - на правый борт. Остойчивость на малых углах крена можно рассматривать. очевидно, как частный случай остойчивости на больших углах крена. Следовательно, диаграмма статической остойчивости должна характеризовать некоторым образом также начальную поперечную остойчивость судна. Действительно, дифференцируя по углу крена Q приближенную (метацентрическую) формулу для плеча статической остойчивости получаем:

При Q=0 эта производная принимает точное значение:

Таким образом, в начальном (прямом) положении судна производная плеча статической остойчивости по углу крена численно равна начальной поперечной метацентрической высоте.

Но, как известно из аналитической геометрии, производная функции геометрически выражает угловой коэффициент касательной в данной точке к графику функции, т. е. тангенс угла между этой касательной и положительным направлением оси абсцисс. Следовательно, для изображения начальной метацентрической высоты на диаграмме плеч статической остойчивости можно воспользоваться следующим по­строением (рис. 2.23): по оси абсцисс откладывают от начала координат отрезок ОА, равный в масштабе углов крена 1 рад, затем в точке А восстанавливают перпендикуляр к оси абсцисс, который пересекается в точке B с касательной к диаграмме, проведенной в начале координат. Отрезок AB этого перпендикуляра, измеренный в масштабе плеч остойчивости, будет равен начальной метацентрической высоте. В самом деле, из прямоугольного треугольника OBA находим

Соответственно, если диаграмма остойчивости построена а моментах, то производная восстанавливающего момента по углу крена при Q=0 будет численно равна коэффициенту поперечной остойчивости k = Ph.

 


Рис. 2.23. Начальная остойчивость на диаграмме статической остойчивости

2.24. Типичные формы диаграммы статической остойчивости:

а) низкооборотного судна;

б) высокооборотного судна.

 


Рис. 2.23. Начальная остойчивость на диаграмме статической остойчивости

 

Рисунок 2.23 наглядно показывает допустимые пределы использования метацентрической формулы (2.10), графиком которой является касательная OB. При малых Q прямая OB и кривая ОСЕ, выражающая действительный закон изменения плеча статической остойчивости по углу Q, практически совпадают. Резкое расхождение между ними начинается обычно после входа в воду кромки палубы» или выхода из воды скулы судна.

При положительной начальной остойчивости характерными точками диаграммы являются точка О - положение устойчивого равновесия судна - и точки B и В' расположенные симметрично относительно начала координат и определяющие углы заката диаграммы Qз, при которых судно находится в положениях неустойчивого равновесия (ом. рис. 2.22). При углах крена, меньших угла заката, судне остойчиво, поскольку восстанавливающий момент стремится вернуть его в положение устойчивого равновесия О. Наибольшую по абсолютному значению ординату диаграммы, определяемую точками А или А' называют максимальным плечом диаграммы (или максимальным восстанавливающим моментом), а отвечающий этой ординате угол крена углом максимума диаграммы остойчивости. Наибольшая ордината диаграммы соответствует предельному статическому кренящему моменту, приложение которого еще не вызывает опрокидывания судна.



Рис. 2.25. Диаграмма Статической остойчивости

 

На рис. 2.24 приведены типичные диаграммы статической остойчивости для низкобортного судна с большой начальной остойчивостью и высокобортного судна с малой начальной остойчивостью.

На рис. 2.25 изображена диаграмма статической остойчивости судна, имеющего отрицательную начальную остойчивость (в. прямом положении). В этом случае положениям неустойчивого равновесия судна будут отвечать не только точки заката диаграммы В и В', но и начало координат О. Положениям устойчивого равновесия будут соответствовать две точки - С и С'. Таким образом, судно с отрицательной начальной остойчивостью не может свободно плавать в прямом положении; оно будет иметь крен Q на правый борт или равный ему крен Qi на левый борт в зависимости от случайных внешних причин (ветра, волнения, перекладки руля и т. п.). Наличие отрицательной начальной остойчивости еще не может служить основанием для заключения, что данное судно вообще неостойчиво и должно опрокинуться. Судно опрокидывается только в том случае, когда его диаграмма остойчивости примет вид, показанный на рис. 2.25 штриховой линией, и будет пересекать ось абсцисс только в одной точке - в начале координат О.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.