Методы дефектоскопии. Ведомость дефектов. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Методы дефектоскопии. Ведомость дефектов.

2018-01-29 2511
Методы дефектоскопии. Ведомость дефектов. 5.00 из 5.00 6 оценок
Заказать работу

Дефектоскопия (от лат. defectus - недостаток, изъян и греч. skopeo - смотрю) - совокупность методов и средств неразрушающего контроля материалов и изделий для обнаружения в них различных дефектов. К последним относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения химического состава и размеров и др.

Важнейшие методы дефектоскопии - магнитной, электрической, вихретоковый, радиоволновой, тепловой, оптической, радиационной, аккустической, проникающих веществ. Наилучшие результаты достигаются при комплексном использовании разных методов.

Магнитной, ультразвуковой, а также рентгеновской дефектоскопией пользуются в тех случаях, когда при внешнем осмотре детали возникает подозрение о наличии скрытого порока и когда проверка предусмотрена правилами ремнта, в частности при дефектации аппаратов, подлежащих проверке по правилам Госгортехнадзора.

Магнитная дефектоскопия основана на регистрации в местах дефектов искажений магнитного поля. Для индикации используют: магнитный порошок или масляную суспензию Fe3O4, частицы которых оседают в местах расположения дефектов (магнитно-порошковый метод); магнитную ленту (связанную с устройством для магнитной записи), накладываемую на исследуемый участок и намагничиваемую в различной степени в дефектных и бездефектных зонах, что вызывает изменения импульсов тока, регистрируемые на экране осциллографа (магнитографичный метод); малогабаритные приборы, которые при передвижении по изделию в месте дефекта указывают на искажение магнитного поля (например, феррозондовый метрд). Магнитная дефектоскопия позволяет выявлять макродефекты (трещины, раковины, непровары, расслоения) с минимальными размерами > 0,1 мм на глубине до 10 мм в изделиях из ферри- и ферромагнитных материалов (в т. ч. в металлонаполненных пластиках, металлопластах и др.).

При электрической дефектоскопии фиксируют параметры электрического поля, взаимодействующего с объектом контроля. Наиболее распространен метод, позволяющий обнаруживать дефекты диэлектриков (алмаза, кварца, слюд, полистирола и др.) по изменению электрической емкости при введении в него объекта. С помощью термоэлектрического метода измеряют ЭДС, возникающую в замкнутом контуре при нагревании мест контакта двух разнородных материалов. Метод применяют для определения толщины защитных покрытий, оценки качества биметаллических материалов, сортировки изделий.

При электростатичном методе в поле помещают изделия из диэлектриков (фарфора, стекла, пластмасс) или металлов, покрытых диэлектриками. Изделия с помощью пульверизатора опыляют высокодисперсным порошком мела, частицы которого вследствие трения об эбонитовый наконечник пульверизатора имеют положительный заряд и из-за разницы в диэлектрической проницаемости неповрежденного и дефектного участков скапливаются у краев поверхностных трещин.

Электропотенциальный метод используют для определения глубины (>> 5 мм) трещин в электропроводных материалах по искажению электрического поля при обтекании дефекта током.

Электроискровой метод, основанный на возникновении разряда в местах нарушения сплошности, позволяет контролировать качество неэлектропроводных (лакокрасочных, эмалевых и др.) покрытий с максимальной толщиной 10 мм на металлических деталях. Напряжение между электродами щупа, устанавливаемого на покрытие, и поверхностью металла составляет порядка 40 кВ.

Вихретоковая дефектоскопия основана на изменении в местах дефектов поля вихревых токов, которые наводятся в электропроводных объектах электромагнитным полем (диапазон частот от 5 Гц до 10 МГц) индукционных катушек, питаемых переменным током. Используют для обнаружения поверхностных (трещин, раковин, волосовин глубиной > 0,1 мм) и подповерхностных (глубина 8-10 мм) дефектов, определения хим. состава и структурных неоднородностей материалов, измерения толщины покрытий и др.

При радиоволновой дефектоскопии происходит взаимодействие (преимущественно отражение) с объектом контроля радиоволн длиной 1-100мм, которые фиксируются специальными приборами - радиодефектоскопами. Метод позволяет выявлять дефекты с минимальными размерами от 0,01 до 0,5 длины волны, контролировать химический состав и структуру изделий, главным образом из неметаллических материалов. Особенно широкое распространение метод получил для бесконтактного контроля проводящих сред.

Тепловая дефектоскопия позволяет обнаруживать поверхностные и внутренние дефекты в изделиях из теплопроводных материалов анализом их температурных полей, возникающих под действием теплового излучения (длины волн от 0,1 мм до 0,76 мкм).

Наибольшее применение имеет так называемая пассивная дефектоскопия (внешний источник нагревания отсутствует), например, тепловизионный метод, основанный на сканировании поверхности объекта узким оптическим лучом, а также метод термокрасок, цвет которых зависит от температуры поверхности изделия. При активной дефектоскопии изделия нагревают плазмотроном, лампой накаливания, оптическим квантовым генератором и измеряют изменение прошедшего через объект или отраженного от него теплового излучения.

Оптическая дефектоскопия основана на взаимодействии исследуемых изделий со световым излучением (длины волн 0,4-0,76 мкм). Контроль может быть визуальным или с помощью светочувствительных приборов; минимальный размер выявляемых дефектов в первом случае составляет 0,1-0,2 мм, во втором - десятки мкм. С целью увеличения изображения дефекта используют проекторы и микроскопы. Шероховатость поверхности проверяют интерферометрами, в т.ч. голографическими, сравнивая волны когерентных пучков света, отраженных от контролируемой и эталонной поверхностей.

Для обнаружения поверхностных дефектов (размер > 0,1 мм) в труднодоступных местах применяют эндоскопы, позволяющие посредством специальные оптические системы и волоконной оптики передавать изображения на расстояния до нескольких метров.

Радиационная дефектоскопия предусматривает радиоактивное облучение объектов рентгеновскими, a-, b- и g-лучами, а также нейтронами. Источники излучений - рентгеновские аппараты, радиоактивные изотопы, линейные ускорители, бетатроны, микротроны. Радиационное изображение дефекта преобразуют в радиографичный снимок (радиография), электрический сигнал (радиометрия) или световое изображение на выходном экране радиационно-оптического преобразователя или прибора (радиационная интроскопия, радиоскопия). Развивается радиационная вычислительная томография, которая позволяет с помощью ЭВМ и сканирующих поверхностьсть объекта сфокусированных рентгеновских лучей получать его послойное изображение. Метод обеспечивает выявление дефектов с чувствительностью 1,0-1,5% (отношение протяженности дефекта в направлении просвечивания к толщине стенки детали) в литых изделиях и сварных соединениях.

Аккустическая дефектоскопия основана на изменениях под влиянием дефектов упругих колебаний (диапазон частот от 50 Гц до 50 МГц), возбужденных в металлических изделиях и диэлектриках. Различают ультразвуковые (эхо-метод, теневой и др.) и собственно акустические (импедансный, акустико-эмиссионный) методы. Наиболее распространены ультразвуковые методы. Среди них самый универсальный - эхо-метод анализа параметров акустических импульсов, отраженных от поверхностных и глубинных дефектов (площадь отражающей поверхности / 1 мм2). При так называемом теневом методе о наличии дефекта судят по уменьшению амплитуды или изменению фазы ультразвуковых колебаний, огибающих дефект. Резонансный метод основан на определении собственных резонансных частот упругих колебаний при их возбуждении в изделии; применяют для обнаружения коррозионных повреждений или утонений стенок изделий с погрешностью около 1%. По изменению скорости распространения (велосимметричный метод) упругих волн в местах нарушения сплошности контролируют качество многослойных металлических конструкций. В основе импедансного метода лежит измерение механического сопротивления (импеданса) изделий преобразователем, сканирующим поверхность и возбуждающим в изделии упругие колебания звуковой частоты; этим методом выявляют дефекты (площадью / 15 мм2) клеевых, паяных и других соединений, между тонкой обшивкой и элементами жесткости или заполнителями в многослойных конструкциях. Анализом спектра колебаний, возбужденных в изделии ударом, обнаруживают зоны нарушения соединений между элементами в многослойных клееных конструкциях значительной толщины (метод свободных колебаний).

Акустико-эмиссионный метод, основанный на контроле характеристик упругих волн, которые возникают в результате локальной перестройки структуры материала при образовании и развитии дефектов, позволяет определять их координаты, параметры и скорость роста, а также пластическую деформацию материала; используют для диагностики сосудов высокого давления, корпусов атомных реакторов, трубопроводов и т.д.

По сравнению с другими методами акустическая дефектоскопия наиболее универсальна и безопасна в эксплуатации.

Дефектоскопию проникающими веществами подразделяют на капиллярную и течеисканием.

Капиллярная дефектоскопия (заполнение под действием капиллярных сил полостей дефектов хорошо смачивающими жидкостями) основана на искусственном повышении свето- и цветоконтрастности дефектного участка относительно неповрежденного. Метод применяют для выявления поверхностных дефектов глубиной > 10 мкм и шириной раскрытия > 1 мкм на деталях из металлов, пластмасс, керамики. Эффект обнаружения дефектов усиливается при использовании веществ, люминесцирующих в УФ лучах (люминесцентный метод), или смесей люминофоров с красителями (цветной метод). Дефектоскопия течеисканием основана на проникании газов или жидкостей через сквозные дефекты и позволяет контролировать герметичность сосудов высокого или низкого давления, многослойных изделий, сварных швов и т. д.

С помощью газовых испытаний утечки либо подсосы выявляют, определяя снижение давления (манометричный метод), создаваемого в изделиях потоком воздуха, азота, гелия, галогена или другого газа, относительное содержание его в окружающей среде (масс-спектрометричный, галогенный методы), изменение теплопроводности (катарометричный метод) и т. д.; на базе этих методов разработаны наиболее высокочувствительные течеискатели. При жидкостных испытаниях изделия заполняют жидкостью (водой, керосином, расвором люминофора) и определяют степень их герметичности по появлению капель и пятен жидкости или светящихся точек на поверхности. Газожидкостные методы основаны на создании внутри изделия повышения давления газа и погружении его в жидкость или обмазывании мест течи мыльной водой; герметичность контролируют по выделению пузырьков газа или мыльной пены. Минимальный размер выявляемого при течеискании дефекта составляет около 1 нм.

Метод люминесцентной дефектоскопии требует применения люминесцентного дефектоскопа или переносных ртутнокварцевых приборов типа ЛЮМ-1, ЛЮМ-2 и т.д. Метод основан на введении в полость дефектов люминесцентного вещества с последующим облучением поверхности детали ультрафиолетовыми лучами. Под их воздействием дефекты становятся видимыми вследствие люминесценции вещества. Метод позволяет выявлть поверхностные дефекты шириной не менее 0,02 мм в деталях любой геометрической формы.

Последовательность операций при люминесцентной дефектоскопии:

- очистка поверхности от загрязнений;

- нанесение проникающего люминесцентного состава;

- нанесение проявляющего порошка;

- осмотр детали в ультрафиолетовых лучах.

Можно применять люминесцентный: керосин - 55-75%, вазелиновое масло – 15-20%; бензол или бензин – 10-20%; эмульгатор – ОП-7 – 2-3 г/л; дефектоль зелено-золотистый – 0,2 г/л. Проявляющие порошки – углекислый магний, тальк или силикагель.

Ведомость дефектов.

После проведения подетальной дефектации составляется дефектная ведомость. В дефектной ведомости отмечается характер повреждения или износа деталей, объем необходимого ремонта с указанием вновь изготавливаемых деталей; указываются также все работы, связанные с капитальным ремонтом (разборка, транспортировка, промывка и т.д.), и работы, которыми заканчивается ремонт (подготовка, шабровка, сборка, проверка на прочность, опробование, сдача в эксплуатацию).

Карты на дефектацию и ремонт являются одним из основных технических документов дляя ремонта. В них излагаются указания по дефектации деталей. Карты располагаются в порядке возрастания нумерации сборочных единиц и деталей или по конструктивной последовательности расположения сборочных единиц.

В левом верхнем углу карты помещается эскиз детали или тенологиеского процесса. На эскизе проставляются габаритные размеры, отдельно показываются профили зубьев шестерен, шлицев, шлицевых и шпоночных пазов, кулаков и т.п. Номера позиций и места контроля выносятся от размерной стрелки и располагаются в возрастающем порядке по часовой стрелке или слева направо.

В правом верхнем углу карты приводятся данные с чертежами, характеризующие деталь.

Принят следующий порядок постороения карты:

- проставляются номера позиций дефектов, указанных на эскизе. Не указанные на эскизе дефекты детали наносятся в первую очередь без проставления позиций;

- заносятся возможные дефекты детали, образующиеся в процессе эксплуатации машины по технологической последовательности их контроля. Сначала отменяются дефекты, определяемые визуально, а затем дефекты, определяемые замерами;

- указываются способы и средства контроля дефектов;

- проставляются номинальне размеры с указанием допусков в соответствии с чертежами завода-изготовителя;

- проставляются допустимые размеры с точностью до 0,01 мм при сопряжении этой детали с новой;

- проставляются допустимые размеры, но в сопряжении с деталью, бывшей в эксплуатации;

- указывается рекомендуемый способ устранения дефекта или выбраковки детали.

Рекомендуемый способ устранения дефектов должен быть наиболее простым, экономичным, опробованным на практике и отвечать возможностям ремонтных заводов.

Порядок проведения ремонта.

1. Настоящий порядок устанавливает и разъясняет особенности проведения негарантийного и гарантийного ремонта оборудования. Здесь и далее в тексте Мастер – лицо, выполняющее ремонт и несущее связанные с этим расходы, а Заказчик – лицо, сдающее оборудование в ремонт и оплачивающее этот ремонт.

2. Доставка оборудования на территорию Мастера, а также возврат оборудования из ремонта по взаимному соглашению Мастера и Заказчика может быть произведена либо Мастером, либо Заказчиком, либо иным лицом, уполномоченным Заказчиком. В случае доставки оборудования Мастером эта доставка подлежит оплате как транспортный расход (выезд Мастера) согласно действующего на момент выезда прейскуранта. Оплате подлежит как выезд для доставки оборудования в ремонт, так и выезд для возврата оборудования из ремонта.

3. Заказчик при передаче оборудования в ремонт соглашается с тем, что оборудование принимается без разборки и поиска неисправностей. Заказчик соглашается с тем, что все неисправности, обнаруженные Мастером при техническом осмотре оборудования, произошли до момента передачи оборудования Мастеру. Заказчик соглашается с тем, что Мастер может обнаружить другие неисправности, не указанные Заказчиком при передаче оборудования в ремонт.

4. Заказчик принимает на себя риск частичной утраты потребительских свойств ремонтируемого оборудования, которая может произойти после ремонта. Мастер в ходе ремонта старается не допустить потерь потребительских свойств и по возможности минимизирует риск таких потерь.

5. Работы по ремонту оборудования проводятся только после согласования с Заказчиком ориентировочной стоимости ремонта. В случае отказа Заказчика от ремонта оплате подлежит стоимость работ по диагностике неисправности.

6. Ремонт может быть четырёх категорий сложности:

- 1-я категория - ремонт визуально обнаруживаемых неисправностей, не требующий поиска неисправных деталей (поломки корпуса, перегорание предохранителя и т.п.);

- 2-я категория - ремонт, требующий поиска неисправных узлов и деталей с применением приборов, с пайкой печатных плат;

- 3-я категория - ремонт, требующий проведения сложной и длительной диагностики, замены множества узлов и деталей, с применением пайки повышенной сложности (пайка микросхем);

- 4-я категория - ремонт, требующий применения специальных технологий и установок (например, высокоточная жидкостная пайка с водяным охлаждением);

7. В ходе проведения ремонта у Мастера может возникнуть необходимость в проведении косвенных операций. Это операции, непосредственно не связанные с выполнением ремонтных работ, но без выполнения которых проведение ремонта было бы невозможным или крайне затруднительным.

Это такие операции, как:

- поиск в интернете схем, мануалов, сервисных инструкций, даташитов на компоненты, изделия и блоки;

- получение конфиденциальной информации, необходимой для проведения ремонта, от изготовителей микроэлектронных изделий и компонентов;

- составление принципиальных схем, ведение электронных библиотек и баз данных;

- изготовление или приобретение специальных приспособлений, инструментов и установок для ремонта;

- разработка сервисных программ и утилит или поиск их в интернете;

- заказ отсутствующих компонентов в интернете и ожидание их поступления или покупка их в магазинах.

Косвенные операции никоим образом не касаются взаимоотношений Мастера и Заказчика и Заказчиком не оплачиваются. Это – сугубо внутреннее дело Мастера, которое оплачивается Мастером. В отношении к Заказчику косвенные операции приводят лишь к дополнительным задержкам при выполнении ремонта.

8. Стоимость блоков, деталей и узлов, заменённых в ремонтируемом оборудовании, оплачивается Заказчиком и входит в калькуляцию ремонта. Стоимость расходных материалов (спецфлюсы и другие химические вещества, провода и т.п.) входит в стоимость работ по ремонту и отдельно не оплачивается.

9. Заменённые в ходе ремонта неисправные детали, узлы и блоки выдаются Заказчику по его просьбе. За хранение этих деталей, узлов и блоков Мастер несёт ответственность в течение одних суток после выдачи Заказчику отремонтированного оборудования. По истечении суток неисправные детали, узлы и блоки утилизируются.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.