Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Топ:
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Дисциплины:
2018-01-29 | 825 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
При переработке пищевого сырья, как правило, происходит снижение содержания минеральных веществ (кроме добавления пищевой соли). В растительных продуктах они теряются с отходами. Так, содержание ряда макро– и особенно микроэлементов при получении крупы и муки после обработки зерна снижается, так как в удаляемых оболочках и зародышах этих компонентов находится больше, чем в целом зерне.
Например, в среднем, в зерне пшеницы и ржи зольных элементов содержится около 1,7%, в муке же в зависимости от сорта от 0,5 (в высшем сорте) до 1,5% (в обойной). При очистке овощей и картофеля теряется от 10 до 30% минеральных веществ. Если их подвергают тепловой кулинарной обработке, то в зависимости от технологии (варки, обжаривании, тушении) теряется еще от 5 до 30%.
Мясные, рыбные продукты и птица в основном теряют такие макроэлементы, как кальций и фосфор, при отделении мякоти от костей.
При тепловой кулинарной обработке (варке, жарении, тушении) мясо теряет от 5 до 50% минеральных веществ. Однако если обработку вести в присутствии костей, содержащих много кальция, то возможно увеличение содержания кальция в кулинарно обработанных мясных продуктах на 20%.
В технологическом процессе за счет недостаточно качественного оборудования может переходить в конечный продукт некоторое количество микроэлементов. Так, при изготовлении хлеба при тестоприготовлении в результате контакта теста с оборудованием содержание железа может увеличиваться на 30%. Этот процесс нежелательный, поскольку вместе с железом в продукт могут переходить и токсичные элементы, содержащиеся в виде примесей в металле. При хранении консервов в жестяных сборных (то есть спаянных) банках с некачественно выполненным припоем или при нарушении защитного лакового слоя в продукт могут переходить такие высокотоксичные элементы как свинец, кадмий, а также олово.
|
Следует учесть, что ряд металлов, таких как железо и медь, даже в небольших концентрациях могут вызвать нежелательное окисление продуктов. Их каталитические окислительные способности особенно ярко проявляются в отношении жиров и жировых продуктов. Так, например, при концентрации железа выше 1,5 мг/кг и меди 0,4 мг/кг при длительном хранении сливочного масла и маргаринов эти металлы вызывают прогоркание продуктов. При хранении напитков в присутствии железа выше 5 мг/л и меди 1 мг/л при определенных условиях часто может наблюдаться помутнение напитков.
37. Методы определения минеральных веществ.
Для анализа минеральных веществ в основном используются физико–химические методы – оптические и электрохимические.
Практически все эти методы требуют особой подготовки проб для анализа, которая заключается в предварительной минерализации объекта исследования. Минерализацию можно проводить двумя способами: "сухим" и "мокрым". "Сухая" минерализация предполагает проведение при определенных условиях обугливания, сжигания и прокаливания исследуемого образца. "Мокрая" минерализация предусматривает еще и обработку объекта исследования концентрированными кислотами (чаще всего HNO3 и H2SO4).
Спектральные методы анализа
Фотометрический анализ (молекулярная абсорбционная спектроскопия). Он используется для определения меди, железа, хрома, марганца, никеля и других элементов. Метод абсорбционной спектроскопии основан на поглощении молекулами вещества излучений в ультрафиолетовой, видимой и инфракрасной областях электромагнитного спектра. Анализ можно проводить спектрофотометрическим или фотоэлектроколориметрическим методами.
Фотоэлектроколориметрия – анализ, основанный на измерении поглощения окрашенными растворами монохроматического излучения видимой области спектра. Измерения проводят с помощью фотоэлектроколориметров, снабженных узкополосыми светофильтрами. Если исследуемое вещество не окрашено, его необходимо перевести в окрашенное соединение, проведя химическую реакцию с определенными реагентами (фотометрическую аналитическую реакцию).
|
Спектрофотометрия – метод анализа, основанный на измерении поглощения монохроматического излучения в ультрафиолетовой, видимой и инфракрасной областях спектра. Такие измерения проводят с помощью спектрофотометров, где в качестве монохроматизаторов используются диспергирующие призмы и дифракционные решетки.
Количественный анализ исследуемого иона обычно проводят методом градуировочного графика.
Эмиссионный спектральный анализ. Методы эмиссионного спектрального анализа основаны на измерении длины волны, интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии. Эмиссионный спектральный анализ позволяет определить элементарный состав неорганических и органических веществ.
Интенсивность спектральной линии определяется количеством возбужденных атомов в источнике возбуждения, которое зависит не только от концентрации элемента в пробе, но и от условий возбуждения. При стабильной работе источника возбуждения связь между интенсивностью спектральной линии и концентрацией элемента (если она достаточно мала) имеет линейный характер, т. е. в данном случае количественный анализ можно также проводить методом градуировочного графика.
Наибольшее применение в качестве источника возбуждения получили электрическая дуга, искра, пламя. Температура дуги достигает 5000– 6000°C. В дуге удается получить спектр почти всех элементов. При искровом разряде развивается температура 7000– 10 000°C и происходит возбуждение всех элементов. Пламя дает достаточно яркий и стабильный спектр испускания. Метод анализа с использованием в качестве источника возбуждения пламени называют пламенно–эмиссионным анализом. Этим методом определяют свыше сорока элементов (щелочные и щелочно–земельные, Cu2+, Mn2+ и др.).
Атомно–абсорбционная спектроскопия. Метод основан на способности свободных атомов элементов в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн.
|
В атомно–абсорбционной спетроскопии практически полностью исключена возможность наложения спектральных линий различных элементов, т. к. их число в спектре значительно меньше, чем в эмиссионной спектроскопии.
Уменьшение интенсивности резонансного излучения в условиях атомно–абсорбционной спетроскопии подчиняется экспоненциальному закону убывания интенсивности в зависимости от толщины слоя и концентрации вещества, аналогичному закону Бугера– Ламберта– Бера
lgJ/J0 = A = klc,
где J0– интенсивность падающего монохроматического света, J– интенсивность прошедшего через пламя света, k – коэффициент поглощения, l – толщина светопоглощающего слоя (пламени), с – концентрация.
Постоянство толщины светопоглощающего слоя (пламени) достигается с помощью горелок специальной конструкции.
Методы атомно–абсорбционного спектрального анализа находят широкое применение для анализа практически любого технического или природного объекта, особенно в тех случаях, когда необходимо определить небольшие количества элементов.
Методики атомно–абсорбционного определения разработаны более чем для 70 элементов.
|
|
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!