Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Построение модели парной линейной регрессии

2018-01-05 319
Построение модели парной линейной регрессии 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные (криволинейные). Если статическая связь между явлениями приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражена уравнением какой либо кривой линии (параболы, гиперболы: степенной, показательной, экспоненциальной и т.д.), то такую связь называют нелинейной или криволинейной.

Для выявления наличия связи, ее характера и направления в статистике используются методы: приведения параллельных данных, аналитических группировок, графический, корреляции и регрессии.

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитически связь между ними описывается уравнениями:

прямой

параболы

гиперболы и т.д.

Определить тип уравнения можно, исследуя зависимость графически. Однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, примерно в арифметической прогрессии, то это свидетельствует о наличии линейной связи между ними, а при обратной связи – гиперболической. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболическая или степенная функция.

Оценка параметров уравнения регрессии в уравнении параболы второго порядка) осуществляется методом наименьших квадратов (МНК), в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождение параметров модели ( и ), при котором минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по уравнению регрессии:

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид:

 

(2.5)
где n – объем исследуемой совокупности (число единиц наблюдения).

В уравнениях регрессии параметр показывает усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов; параметр (а в уравнении параболы и ) – коэффициент регрессии показывает, насколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения.

Сопоставив полученные ряды данных x и y, можно наблюдать наличие прямой зависимости между признаками, когда увеличение кредитных вложении сопровождается увеличением суммы активов коммерческих банков. Исходя из этого можно сделать предположение, что связь между признаками прямая и ее можно описать уравнением прямой.

 

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.