История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Топ:
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Дисциплины:
2017-12-09 | 754 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Любое состояние кубита может быть получено из состояния посредством некоторого унитарного преобразования. Состоянию на сфере Блоха соответствует «северный» полюс. Нетрудно видеть, что для того, чтобы из «северного» полюса попасть в точку на сфере Блоха нужно совершить поворот на угол относительно оси , лежащей в плоскости .
Введем следующий унитарный оператор:
(4.4)
Задача4.6 Докажите справедливость представленного тождества путем разложения матричной экспоненты в ряд.
Оказывается, что оператор осуществляет поворот исходного блоховского состояния относительно оси на угол , что иллюстрируется следующей задачей.
Задача 4.7 Пусть исходное состояние есть . Подействуйте на него оператором , где . Покажите, что в результате получится следующее состояние кубита, отвечающее точке на сфере Блоха:
Заметим, что представленная запись для состояния кубита на сфере Блоха отличается от формулы (4.3) раздела 4.1 только несущественным фазовым множителем.
Система кубитов
Анализ системы кубитов, состоящей более чем из одного кубита, позволяет выяснить природу преимущества квантовых вычислений по сравнению с классическими.
В классической физике, возможные состояния системы частиц, индивидуальные состояния каждой из которых описываются вектором в двумерном векторном пространстве, образуют векторное пространство, содержащее измерений. В то же время, для квантовых систем соответствующее результирующее пространство имеет гораздо большую размерность, а именно . Это обуславливает экспоненциальный рост размерности пространства состояний с увеличением числа частиц, что, в свою очередь, лежит в основе возможного радикального увеличения скорости вычислений квантового компьютера по сравнению с классическим. С математической точки зрения отличие квантовых систем от классических заключается в том, что в классической физике пространство состояний образуется посредством операции декартового произведения, в то время как в квантовой – посредством тензорного произведения.
Проиллюстрируем особенности квантовых систем на примере регистра из 3 кубитов. Базис такой системы состоит из векторов:
Например, запись означает тензорное произведение . В стандартном представлении , , поэтому:
, ,…,
Число, стоящее в скобках Дирака, задает номер базисного квантового состояния в двоичном представлении. Например: и есть различная записи одного и того же базисного состояния.
Задача 4.8 Основываясь на определении тензорного (кронекеровского) произведения матриц, докажите следующее тождество:
|
Здесь считается, что оператор и состояние заданы в гильбертовом пространстве первой частицы, а оператор и состояние - в гильбертовом пространстве второй частицы. Указанное тождество показывает, что в составной системе действие оператора на двухчастичное состояние сводится к тензорному произведению двух векторов , первый из которых описывает действие оператора на первую частицу, а второй - действие оператора на вторую частицу.
Неожиданным с точки зрения обычной интуиции является то, что состояние системы не всегда описывается в терминах состояния отдельных ее частей. Например, такое состояние из двух кубитов как не может быть разложено отдельно на состояния каждого из двух кубитов. Другими словами, мы не можем найти такие , которые обеспечивали бы выполнение следующего равенства:
Действительно:
Отсюда следует, что , поэтому либо , либо , что невозможно.
Состояния системы, которые не могут быть представлены в виде произведения состояний ее частей, как уже указывалось ранее, называются запутанными (entangled) состояниями.
В соответствии с постулатами квантовой информатики полное описание каждого кубита в отдельности задается соответствующими однокубитовыми векторами состояний. Исходное состояние системы независимо приготовленных кубитов задается тензорным произведением однокубитовых состояний. При включении взаимодействия между кубитами возникают квантовые корреляции. В результате, совместное состояние регистра кубитов перестает быть сепарабельным, т.е. становится запутанным.
Запутанные состояния соответствуют ситуациям, которые не имеют классических аналогов и за которыми не стоит интуиция, подкрепленная наглядными механическими образами. Заметим, что такие состояния как раз и обеспечивают экспоненциальный рост размерности гильбертова пространства состояний в зависимости от числа кубитов.
|
Измерение кубитов
Измерение в квантовой системе, состоящей из одного или более кубитов, есть результат проектирования состояния системы до измерения в гильбертово подпространство, совместимое с измеренными значениями. При измерении, как уже отмечалось выше в главе 3, происходит редукция состояния. Амплитуда вероятности проекции, полученной в результате редукции, пересчитывается таким образом, чтобы снова быть нормированной на единицу.
В силу Постулата 3 (раздел 3.1), вероятность того, что результат измерения примет заданное значение, есть сумма квадратов модулей амплитуд вероятности всех компонент, совместимых с результатом измерения.
Рассмотрим для примера измерения в системе из двух кубитов. Вектор состояния такой системы в общем случае есть:
Здесь - произвольные комплексные числа, удовлетворяющие условию нормировки:
Пусть измеряется первый кубит. Вероятность обнаружить его в состоянии есть , а в состоянии соответственно . Если измерение первого кубита дало , то редуцированное состояние окажется пропорциональным вектору . После нормировки получим окончательно для состояния после рассматриваемого измерения:
Измерения запутанных и незапутанных состояний принципиально отличаются друг от друга. С точки зрения концепции измерений, кубиты оказываются незапутанными, если измерение одного из них никак не влияет на состояние другого и, напротив, кубиты обязательно будут запутаны, если такое влияние существует.
Рассмотрим, например, состояние , которое не является запутанным, т.к. может быть представлено в виде тензорного произведения отдельных кубитов . Здесь, очевидно, измерение первого кубита никак не влияет на состояние второго и наоборот.
Рассмотрим, напротив, состояние , которое является запутанным. Теперь, результат измерения одного из кубитов влияет на то, какое состояние возникнет у второго кубита. Так, если первый кубит окажется в состоянии , то и второй автоматически окажется в состоянии , если же в результате измерения первого кубита будет получено состояние , то и второй кубит обязательно будет обнаружен в состоянии . Рассматриваемое состояние является одним из так называемых состояний Белла. Подробнее свойства таких состояний будут описаны в разделах 4.8- 4.10
|
|
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!