История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Принцип независимости действия сил.

2017-11-16 506
Принцип независимости действия сил. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Если на тело действует несколько сил, то каждая из них сообщает телу ускорение, определяемое основным законом динамики, так, как если бы других сил не было.

Например, произвольно направленную и в пространстве силу F можно представить в виде суммы ее составляющих (компонентов):

 

 

где ex, ey, ez - орты прямоугольной системы координат OXYz.

Второй закон динамики в этом случае имеет вид:

 
 

 

 


 
 

откуда:

МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОГО ЦЕНТРА.

Моментом силы называют количественную меру вращательного эффекта, вызываемого силой. Момент силы должен определять величину этого эффекта, плоскость поворота точки и направление поворота в этой плоскости.

(рис23)

 

Величина момента силы равна произведению модуля силы на ее плечо h (величину перпендикуляра, опущенного из заданного центра O на линию дей­ствия силы). Если начало вектора си­лы совпадает с точкой А, а конец – А с точкой В, то, очевидно, плоскость поворота совпадает с плоскостью треугольника OAB (рис. 23).

Условились вектор момента силы относительно центра M0(F) проводить из этого центра O перпендикулярно плоскости поворота в ту сторону, откуда поворот виден происходящим против хода часо­вых стрелок. Модуль же вектора (длина вектора в выбранном масштабе) равен.

 

 
 

Очевидно, что такой вектор равен векторному произведению:

 

где: r - радиус-вектор точки приложения силы, проведенный из заданного центра.

МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОЙ ОСИ.

 

Моментом силы относительно оси называют величину, характеризующую вращательный эффект, вызываемый силой при вращении тела вокруг заданной оси.

К телу А, способному вращаться вокруг оси z приложена сила F (рис. 24). Очевидно, что эффект вызываемый силой, определяется сум­мой эффектов, вызываемых ее проекциями Fz и Fxy, первая из кото­рых вращения тела вокруг оси z вызвать не может. Следовательно, момент силы относительно заданной оси определяется моментом ее про­екции на плоскость, перпендикуляр­ную оси, относительно точки Пересечения оси с плоскостью.

МОМЕНТ СИЛЫ оТНОСИТЕЛЬНО КООРДИНАТНОЙ ОСИ.

Пользуясь полученным выше результатом можно записать выражения моментов силы относительно координатных осей. Пусть к телу приложена сила F, координаты точки приложения которой равны x,y,z. Момент силы F относительно оси oz равен моменту ее проекции Fxy относительно начала координат (т. 0). В свою очередь момент Fxy равен сумме моментов сил Fx и Fy относительно того же центра. Очевидно, что плечи сил Fx и Fy численно рав­ны координатам точки приложения силы y и x соответственно. С учетом знаков моментов этих составляющих можно записать

(рис 25)

 

 
 

 
 

Аналогично определяются моменты силы F относительно осей ОХ и ОУ:


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.