
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Топ:
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Интересное:
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Твёрдое тело представляет собой упругую среду,поэтому, вызванные внешним воздействием в какой-либо его точке, деформации должны распространяться по всему объёму тела. Выделим и твёрдом теле такой его участок (см. рис. 133), чтобы во всех точках сечения выделенного участка деформации были одинаковыми. Воздействуем на торец выделенного участка кратковременным импульсом силы F=Δt, нормальным к сечению. Под действием импульса в пограничном слое возникает деформация сжатия. Силы упругости в деформированном слое действуют на частицы слоя, прилегающего к деформированному, в результате чего возникают деформации и в этом слое. Таким образом, импульс сжатия начинает распространяться в теле.
Процесс распространения импульса сжатия можно представить как движение некоторого "избытка массы" Δm=ΔpV, где: Δр - изменение плотности среды в деформированием слое, а V - его объём. По второму закону динамики:
Δ(mv)=FΔt
![]() |
где: - относительная деформация продольных размеров слоя, S - площадь поперечного сечения, Е - модуль Юнга.
Поскольку скорость распространения импульса сжатия не зависит от начальных условий, а определяется только свойствами самой среды, то изменение импульса деформированного слоя выражается соотношением
Превышение плотности Δр над плотностью недеформированного участка можно выразить через относительное изменение плотности.
Учтём также, что длина Δl деформированного слоя равна расстоянию, проходимому импульсом сжатия за время действия силы, т.е. Δl = vΔt.
![]() |
Относительное изменение продольных размеров и относительное изменение плотности при малых деформациях можно считать равными. Действительно, если масса участка среды, подвергаемого деформации, равна т, а объём, то плотность недеформированного участка равна После того, как в слое возникла деформация сжатия, плотность увеличится:, где ΔV=SΔl - изменение объёма слоя. Исходя из сказанного, относительное изменение плотности равно:
Умножив числитель и знаменатель полученного выражения на разделив затем
![]() |
числитель и знаменатель на и пренебрегая величиной второго порядка малости (при малых деформациях), получим, что
Таким образом, относительное изменение плотности при малых деформациях равно относительной деформации продольных размеров. Учитывая это, окончательно основной закон динамики приводим к виду:
|
pv2 =Е
откуда получаем значение скорости распространения продольного импульса деформации:
![]() |
Проводя аналогичные рассуждения для случая, когда на торец выделенного участка действует импульс силы по касательной к сечению, получим такие же качественные выводы. В отличие от предыдущего случая в слоях будет возникать деформация сдвига, относительная деформация слоя из закона Гука выражается через модуль сдвига N, а скорость распространения импульса деформации, соответственно, будет равна:
![]() |
Введём несколько определений, касающихся волн.
1. Совокупность точек среды, колеблющихся в одинаковых фазах, называется волновой или фазовой поверхностью.
2. Фронтом волны называется совокупность точек среды, до которых в данный момент времени дошли колебания. Таким образом, фронтом волны является волновая поверхность, соответствующая нулевой фазе колебаний.
3. Фазовой или волновой скоростью называется скорость перемещения в среде постоянной фазы колебаний.
В зависимости от формы фронта волны (волновой поверхности) различает частные типы волн - плоские, сферические, цилиндрические, для которых волновая поверхность представляет собой, соответственно, плоскость, сферическую и цилиндрическую поверхности.
|
|
|
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!