История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Дисциплины:
2017-09-29 | 348 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
1. Сегодня мы остановимся на вопросе, который все больше привлекает внимание инженеров-практиков и ученых.Это вопрос о будущем энергетики, об энергетических ресурсах. Во-первых, запасы нефти, ставшей в наше время основным источником энергии, ограничены. К тому же нефтяные ресурсы размещены на Земле весьма неравномерно. Только 15 государств мира способны обеспечить себя собственной нефтью. Давайте вместе с вами разберемся в этом вопросе. Чем можно заменить нефть? Таким источником энергии может стать уголь. Почему именно уголь, а не ядерное топливо, не солнечная энергия, не силы морских приливов?
Подсчитано, что при сегодняшних темпах развития ядерная энергетика сможет дать только около 10% всей энергии, в которой нуждается человечество. Немногим более двух процентов может дать солнечная энергия.В то же время на долю угля в мировой энергетической модели к 2030-му году будет приходиться около половины всех источников энергии.
Запасы угля распределены на планете гораздо равномернее, чем запасы нефти. Раньше уголь казался дорогим по сравнению с нефтью, теперь, когда цены на нефть по разным причинам быстро и резко меняются, возрос интерес к использованию угля. Например, Австралия увеличивает производство угля. Индия перешагнула стомиллионный рубеж. 74 тепловые электростанции США переходят с жидкого топлива на уголь. Потребление угля для нужд энергетики быстро растет.
По подсчетам специалистов, угля хватит надолго, на сотни лет. Преимущество его еще и в том, что производство угля можно сделать дешевле с внедрением автоматики.
Во многих странах мира ведутся работы по переработке угля в газ и жидкое топливо. К сожалению, нам нужно признать, что газ, получаемый по методу подземной газификации угля, имеет в два раза меньшую теплотворную способность, чем природный газ. Метод нуждается в усовершенствовании, на что и направлены сейчас усилия ученых и инженеров.
|
Отметим, что подземная газификация угля не является последним достижением научной мысли: уже предложен проект химической «шахты», особые вещества-растворители будут закачиваться под землю и насыщенный углем раствор потечет из-под земли, подобно тому,как течет нефть из скважины. Мы должны иметь в виду, что все это технически осуществимо уже сегодня.
Нам нужно признать, что у угля есть еще один недостаток, которого лишена самая низкосортная нефть. Это затраты на перевозку угля. Они гораздо больше затрат на транспортировку нефти. При погрузке и разгрузке часть угля теряется, превращается в пыль. Транспортировка угля – это та проблема, над которой интенсивно работают сегодня ученые. Предложения здесь такие: перерабатывать уголь в транспортабельный продукт, например, порошок, смешанный с водой, и перекачивать пульпу по трубопроводу, как нефть.Мы видим, что проблему транспортировки можно решить.Но остаются другие проблемы.
Перейдем к следующей проблеме – проблеме охраны окружающей среды. Уголь – это пыль, грязь, это зола, это нарушение земной поверхности, если речь идет о карьерах. Отметим далее, что опасны пустоты в земных недрах, если иметь в виду шахты.Прибавим к этому наличие терриконов, облака сернистого газа, если уголь содержит серу. Мы должны иметь в виду, что большую опасность для окружающей среды представляет и углекислый газ – продукт сгорания угля. Увеличение содержания углекислого газа в атмосфере повышает температуру окружающего воздуха, оказывает влияние на климат.
Итак, с увеличением роли угля как топлива и источника энергии возникает ряд проблем, решать которые предстоит нам с вами.
2.
На сегодняшней лекции мы с вами поговорим о лазере. Что же такое лазер? Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча.
|
Установлено, что основной физический процесс, который определяет действие лазера, это вынужденное испускание излучения. Вынужденное испускание излучения происходит вследствие соблюдения двух условий: первое — при взаимодействии фотона с возбужденным атомом, второе — при точном совпадении энергии фотона с энергией возбуждения атома. В результате взаимодействия-фотона с возбужденным атомом этот атом переходит в невозбужденное состояние. Образовавшийся избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, результатом данного процесса является наличие уже двух абсолютно идентичных фотонов.
Интересно, что в ходе дальнейшего взаимодействия этих фотонов с возбужденными атомами может возникнуть так называемая «цепная реакция» размножения одинаковых фотонов. Вновь возникшие фотоны движутся только в одном направлении, благодаря чему появляется узконаправленный световой луч.
Естественно, что для возникновения лавины идентичных фотонов необходима специальная среда. Исследования показали, что в такой среде возбужденных атомов должно быть больше, чем невозбужденных. В противном случае при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Так вот, такая специальная среда называется средой инверсной населенности уровней энергии, или активной средой.
Итак, подведем некоторый итог нашим рассуждениям. Вы, безусловно, отметили в своих конспектах такие положения, как: первое — кроме вынужденного испускания фотонов возбужденными атомами происходит также процесс самопроизвольного, спонтанного испускания фотонов. Данный процесс происходит под влиянием перехода возбужденных атомов в невозбужденное состояние. Второе: наряду с процессом спонтанного испускания фотонов наблюдается еще один процесс — процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Кстати, эти три процесса, благодаря которым происходят переходы атомов в возбужденные состояния и обратно, были описаны А. Эйнштейном еще в 1916 году.
Можно допустить, что при одновременном рождении большого числа спонтанно испущенных фотонов возникает большое число лавин. Каждая из образовавшихся лавин будет распространяться в определенном направлении. Это направление будет задано первоначальным фотоном соответствующей лавины. В результате этого мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой интенсивности этого луча.
|
Для получения интенсивного лазерного луча используют два плоских параллельных зеркала. Одно из этих зеркал делается полупрозрачным для выхода лазерного луча. Слабый лазерный луч, обусловленный одной лавиной, отражаясь от зеркала, снова попадает в активную среду и усиливает себя. Так, многократно проходя через активную среду, лазерный луч становится и остронаправленным, и достаточно интенсивным.
А теперь давайте рассмотрим некоторые уникальные свойства лазерного излучения. Как известно, при спонтанном излучении атом излучает спектральную линию конечной ширины. В среде с инверсной населенностью наблюдается лавинообразное нарастание числа вынужденных испущенных фотонов. Причем интенсивность излучения лавины будет возрастать прежде всего в центре спектральной линии данного атомного перехода. В результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. Правда, на практике удается сделать относительную ширину спектральной линии лазерного излучения в- 10—100 миллионов раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.
Следует отметить и еще одно удивительное свойство лазерного луча, а именно: высокую, более десятка миллионов градусов, эффективную температуру лазерного луча.
В настоящее время созданы лазеры на самых различных средах: газах, жидкостях, стеклах, а также кристаллах. Общеизвестно также, что лазеры нашли широкое применение в таких отраслях промышленности, как микроэлектроника, электровакуумная промышленность, машиностроение, автомобильная промышленность и многих других.
Упражнение 10.Перечитайте текст 3 из упр.4. Определите, с помощью какого способа в публичном устном выступлении автор передал свое отношение к результатам исследования докладчика. Выпишите данные фрагменты фраз.
|
Упражнение11.Ознакомьтесь с текстом выступления акад. В. И. Павлишина на международной научной конференции Найдите в нем реализации такой фигуры речи как повтор. Запишите их. Докажите целесообразность их использования в ораторской речи.
Глубокоуважаемый председатель, уважаемые коллеги! Сейчас я хочу обратиться к нашей аудитории и сделать такое неофициальное объявление. Если среди Вас есть желающие, как авторы, принять участие в создании книги «Воспоминания об академике Евгении Лазаренко», прошу после заседания обратиться ко мне. Однако вернемся к обсуждаемым проблемам.
Предыдущий оратор часто цитировал и ссылался на Владимира Ивановича Вернадского. И я хотел бы также обратиться к нему и вспомнить о том, что, формулируя задания минералогии и обдумывая основания для исследования полезных ископаемых, он считал, что «эти исследования обязательно должны проводиться на минералогической основе». Итак, изучение полезных ископаемых – это прежде всего минералогическая проблема. Поэтому, когда речь идет о том, что мы, геологи, призваны разрабатывать научные основания развития минерально-сырьевой базы, ее расширение и совершенствование, я прежде всего хочу сказать, что без минералогии тут не обойтись. И поэтому, несколько опережая события, что я хочу обратиться к Оргкомитету конференции с просьбой в дальнейшем шире привлекать к работе таких конференций минералогов и заказывать им соответствующие минералогические доклады. Это важно еще и потому, что в минералогии, которая является фундаментальной наукой в цикле геологических наук, есть хорошо наработанные теории.
Используя только несколько фрагментов из прозвучавших докладов,я хотел бы привести некоторые примеры, когда минералогия могла бы быть полезной для решения общегеологических проблем. Прежде всего я хочу сказать, что в минералогии выяснено общие закономерности (и это сделано минералогами) эволюции минеральных веществ в геологической истории Земли. Теперь они должны быть надлежащим образом связаны с геохронологией…Для этого необходимо привлечь к геохронологии те представления, которые наработаны в области генетической минералогии и касаются прежде всего закономерностей эволюции минеральных веществ в истории Земли.
Часть 2.
Литература:
|
|
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!