Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Топ:
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства...
Интересное:
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Дисциплины:
2017-06-29 | 1985 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Определение. Комплексным числомz=x+iy называется упорядоченная пара действительных чисел : .
Действительные числа х и у называются, соответственно, действительной и мнимой частями комплексного числа z и обозначаются:
Определение. Вещественное неотрицательное число:
называют модулем комплексного числа .
Теорема. (Об умножении комплексных чисел в тригонометрической форме записи.)
Пусть , где и , где – два произвольных комплексных числа записанных в тригонометрической форме. Тогда
.
Теорема. (Свойства модуля комплексного числа.)
Пусть – произвольные комплексные числа и соответствующие точки на комплексной плоскости. Тогда:
1) и . Т.е. модульпроизведения комплексных чисел равен произведению их модулей и модули противоположных чисел равны;
2) расстояниемеждуточками и комплексной плоскости равно модулю разности соответствующих комплексных чисел: ;
3) ;
4) ;
Доказательство. 1) По предыдущей теореме имеем:
, где и ,
т.е. .
Таким образом, равенства и есть тригонометрическаяформа записи числа , следовательно, по теореме о равенстве комплексных чисел в тригонометрической форме записи, имеем , ч.т.д.
Далее, т.к. , то по только что доказанному свойству , ч.т.д.
Заметим, что последнее равенство можно получить и из других соображений.
Противоположные числа на комплекснойплоскости изображаются точками симметричными относительно начала координат. Действительно, пусть . Тогда и точки , имеют противоположные декартовые координаты. Значит, в силу симметрии, расстояния от этих точек до начала координат равны, т.е. , ч.т.д. Заметим, также, что такой же результат можно получить с помощью формулы (12) вычисления модуля комплексного числа.
2). Пусть , . Тогда и по формуле (12) имеем:
. (14)
С другой стороны, рассмотрим числа и как точки на комплексной плоскости. Тогда точка имеет декартовыекоординаты , а и искомое расстояниемежду ними вычисляется по формуле (14), ч.т.д.
3) Рассмотрим на комплекснойплоскости точки , и начало координат О. В общем случае эти три точки являются вершинами треугольника :
рис.6.
Воспользуемся известным свойством треугольника: длина стороны треугольника не превосходит суммы длин двух его других сторон.
Мы только что доказали, что длина стороны этого треугольника равна , а длины сторон и равны по определению модулям чисел и : , . Отсюда и получаем, что .
Заменим в последнем неравенстве число на противоположное число , тогда получаем:
, ч.т.д.
Заметим, что равенство в этих неравенствах достигается тогда и только тогда, когда треугольник вырождается в отрезок прямой, т.е. когда все три точки О, и лежат на одной прямой.
|
4) , откуда следует
. Поменяв местами и , получаем
, откуда и следует доказываемое неравенство.
Теорема доказана.
|
|
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!