
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Топ:
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Интересное:
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Под множеством понимается любая (конечная или бесконечная) совокупность объектов с некоторой общей характеристикой (или, что то же самое - объектов одинаковой природы). Эти объекты называются элементами множества. Множества с конечным числом различных элементов могут быть описаны путем явного перечисления всех этих элементов: обычно, эти элементы заключаются в фигурные скобки. Например, - множество степеней двойки, заключенных между 1 и 10. Как правило, множество обозначается прописной буквой какого - либо алфавита, а его элементы - строчными буквами того же или другого алфавита. Для некоторых особо важных множеств приняты стандартные обозначения, которых стоит придерживаться. Так, буквами
N - множество натуральных чисел
Z - множество целых чисел
Q - множество рациональных чисел
R - множество вещественных (или действительных) чисел
При заданном множестве S включение указывает на то, что a - элемент множества S; в противном случае, как вы знаете, пишут
(или
).
Множество можно описать, указав свойство, присущее только элементам именно этого множества. Множество всех объектов, обладающих свойством , обозначают через
. Например:
- множество всех четных чисел;
- множество натуральных чисел.
Множество, не содержащее элементов, называется пустым и его принято обозначать символом Æ.
Говорят, что S – подмножество множества или
(
содержится в
), если все элементы множества
являются также элементами множества
, то есть
.
Два множества и
совпадают (или равны), если у них одни и те же элементы. Символически это выглядит так:
и
.
Заметим, что пустое множество Æ (т.е. множество совсем не содержащее элементов) по определению входит в число подмножеств любого множества.
Если , но
Æ и
, то
- называется собственным подмножеством в
. Для выделения подмножества
часто используют какое - либо свойство, присущее только элементам из
.
Для множеств справедливы следующие соотношения:
(значок - это значок конъюнкции, т. е. логическое «и»).
Конечное множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от 1 до .
Для пояснения некоторых определений и свойств операций над множествами и различных соотношений между ними воспользуемся диаграммами Эйлера – Венна, на которых множества, подлежащие рассмотрению, изображаются в виде совокупности точек на плоскости.
Универса́льное мно́жество — в математике множество, содержащее все объекты и все множества.
Универсальное множество обычно обозначается {\displaystyle U} (от англ. universe, universal set), реже {\displaystyle E}
.
На диаграммах Венна универсальное множество (в обоих значениях) изображается множеством точек некоторого прямоугольника; подмножества его точек изображают подмножества универсального множества[1].
Пусть В А. Дополнением множества В до множества А называется множество, содержащее все элементы множества А, которые не принадлежат множеству В:
'.= {x | x
A, x
B}.
7. Дать определения операций над множествами: объединение, пересечение, разность.
1. Под пересечением (произведение) двух множеств и
понимается множество:
|
Например:
2. Под объединением (сумма) двух множеств и
понимается множество:
|
( - значок дизъюнкции, логическое «или»)
Например:
3. Разностью \
множеств
и
называется совокупность тех элементов, из
, которые не содержатся в
, то есть
|
Порядок множеств при выполнении этой операции существенен.
4. Если (здесь
– основное, универсальное множество) то
![]() |
|
|
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!