Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

IV. Патофизиология гемостаза

2017-06-12 394
IV. Патофизиология гемостаза 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Понятие о гемостазе

 

Система гемостаза - биологическая система, обеспечивающая, с одной стороны, сохранение жидкого состояния циркулирующей крови, а с другой – предупреждение и купирование кровотечений.

Компоненты системы гемостаза:

· сосудисто-тромбоцитарное звено

· система свертывания крови (коагуляция)

· физиологические антикоагулянты

· фибринолитическая система (тромболизис)

Сосудисто-тромбоцитарный гемостаз.

В сосудисто-тромбоцитарном механизме свертывания крови участвуют сосуды, ткань, окружающая сосуды и форменные элементы крови (главная роль принадлежит тромбоцитам).
Тромбоциты образуются в костном мозге из мегакариоцитов. Продолжительность их жизни около 9 суток. При недоста-точном количестве тромбоцитов или их функциональной неполноценности развивается микроциркуляторный тип кровоточивости. К важнейшим функциям тромбоцитов относят адгезивно-агрегационную.и.ангиотрофическую.
В условииях нормы эндотелий эффективно предупреждает процессы адгезии, агрегации тромбоцитов, а также реакций коагуляции. Способность эндотелия сохранять кровь в жидком состоянии обеспечивается синтезом ингибитора агрегации тромбоцитов простациклина и отрицательным зарядом эндотелиальных клеток. Кроме того, эндотелиальный белок тромбомодулин препятствует уже начавшейся коагуляции. Основной функцией тромбомодулина является инактивация тромбина и превращение (модификация) его в мощный активатор антикоагулянтной системы - протеин С. За счет этого происходит значимое снижение скорости коагуляционных реакций. Эндотелий участвует в фибринолизе за счёт синтеза и выделения в кровоток тканевого плазминогенового активатора, который активирует плазминовую.систему.
При повреждении мелкие сосуды спазмируются. Этот спазм обусловлен сокращением гладкомышечных клеток, он возникает рефлекторно и продлевается серотонином, тромбоксаном А2, катехоламинами и другими вазоконстрикторами, которые появляются из эндотелиальных клеток и тромбоцитов. Повреждение сосудов сопровождается быстрой активацией тромбоцитов. Эта активация обусловлена появлением высоких концентраций АДФ (из поврежденных эритроцитов и сосудов), а также появлением коллагеновых и фибриллярных структур из субэндотелия. Контакт крови с коллагеном немедленно ведёт к адгезии тромбоцитов, реализуемой с участием рецепторов GP-Ia, GP-Ib и фактора Виллебранда. Под влиянием АДФ, тромбоксана А2 и катехоламинов тромбоциты склеиваются между собой, образуя агрегаты, которые являются основой тромбоцитарной пробки. Усилению агрегации способствует тромбин, всегда появляющийся в результате свертывания крови в месте повреждения. Агглютинация и агрегация сопровождается изменением формы тромбоцитов и появлению рецепторов на мембране тромбоцитов к фибриногену (GPIIb-IIIa), благодаря чему, в присутствии ионов Са++, последний связывает между собой активированные тромбоциты. Такая связь между активированными тромбоцитами не прочна. Именно поэтому такую агрегацию называют обратимой. Образование прочной тромбоцитарной пробки следует после вторичной агрегации, которая сопровождается секрецией из тромбоцитов ПгG2, ПгH2, тромбоксана А2, ионов Са++, фактора активации тромбоцитов (ФАТ), адреналина, норадреналина, фибриногена и многих других. Секреция этих веществ обусловлена активацией актомиозиновой системы тромбоцитов, что обуславливает выделение вышеперечисленных субстанций из тромбоцитов за счёт повышения давления внутри тромбоцита. Кроме того, активация актомиозиновой системы ведет к ретракции (сокращению и уплотнению) тромбоцитарной пробки.
В норме кровотечение из мелких сосудов прекращается не более чем через 5 минут.

Коагуляционный гемостаз.

При повреждении крупных кровеносных сосудов тромбоцитарная пробка не способна остановить кровотечение. Только коагуляционный гемостаз способен остановить кровотечение из крупного сосуда. В коагуляционных реакциях принимают участие специальные белки, фосфолипиды (из тромбоцитарной мембраны), ионы кальция. Большинство белков, участвующих в коагуляции, являются проферментами (обозначаются римскими цифрами). Их активация осуществляется за счет протеолиза (они обозначаются римскими цифрами с добавлением буквы а, например, IIа, Xа, Vа и др.).Дополнительные факторы:фактор Виллебранда, фактор Флетчера, фактор Фитцжеральда.

Процесс свертывания крови - это целая цепь последовательных ферментативных реакций, в которой проферменты, активируясь, способны активировать другие факторы свертывания крови. Удобно рассматривать схему коагуляции в виде каскада ферментативных реакций, условно разделенного на внутренний и внешний механизмы. Конечным продуктом коагуляционных реакций и по внешнему и по внутреннему механизму является фибрин.

Внешний механизм свертывания предполагает обязательное наличие тканевого фактора (фактора III), а старт коагуляции начинается с активации фактора VII. Активированный фактор VII переводит фактор X в Xа и активирует фактор IX (активация фактора IX идет медленно и существенной роли в коагуляции не играет). Затем фактор Xа переводит протромбин (II) в тромбин. Эту реакцию значительно ускоряют коагуляционный фактор Vа и фосфолипиды. Образование фибрина инициализируется по внешнему пути очень быстро (в течение секунд), что ведет к появлению первых порций тромбина, активирующих другие коагуляционные факторы (VIII, V, XIII и др.).

Старт коагуляции по внутреннему механизму начинается с активации фактора Хагемана (XII) и происходит на фосфолипидных мембранах тромбоцитов. Фактор Хагемана активируется коллагеном из эндотелия, адреналином и др., а затем уже активированная молекула фактора Хагемана преобразует фактор XI в XIа. В этой реакции принимает участие калликреин, который также активируется фактором XIа. В свою очередь, фактор XIа активирует фактор IX. Фактор IXа на фосфолипидных мембранах с участием фактора VIIIа и ионов Са++ путем протеолиза превращает фактор X в его активированную форму. Далее фактор Xа переводит протромбин в тромбин. Эту реакцию значительно ускоряют коагуляционный фактор Vа и фосфолипиды.

Конечный этап коагуляции. Переход фибриногена в фибрин происходит следующим образом: от фибриногена тромбин отщепляет 2 фибринопептида А и 2 фибринопептида В. Так образуются фибрин-мономеры. Затем формируются димеры, тримеры и олигомеры фибрина. После этого образуются фибриллы растворимого фибрина. Фибрин-стабилизирующий фактор (активированный тромбином) в присутствии Са++ превращает нестабильный, растворимый фибрин в стабильный нерастворимый фибрин. В результате этого сгусток фибрина становится резистентным к фибринолитическим агентам и с трудом разрушается другими протеолитическими веществами. Образовавшийся сгусток фибрина уплотняется за счет тромбоцитов, в большом количестве попадающих в структуру сгустка. Наступает ретракция сгустка фибрина. Сгусток, состоящий из тромбоцитов, эритроцитов и большого числа волокон фибрина, способен остановить кровотечение из крупных сосудов.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.268 с.