Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Собственные векторы и собственные значения матриц

2017-05-23 348
Собственные векторы и собственные значения матриц 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Другой важной задачей линейной алгебры является задача поиска собственных векторов x и собственных значений λ квадратной матрицы A, т. е. решение матричного уравнения A·x=λ·x. Такое уравнение имеет решение в виде собственных значений λ1,λ2,… и соответствующих им собственных векторов x1,x2,… Для решения таких задач в MathCAD встроено несколько функций:

1. eigenvals(A) – вычисление вектора, элементами которого являются собственные значения матрицы A.

2. eigenvecs(A) – вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы A. n -й столбец вычисляемой матрицы соответствует собственному вектору n -го собственного значения, вычисляемого eigenvals.

3. eigenvec(A,λ) – вычисляет собственный вектор для матрицы A и заданного собственного значения λ.

Задание 27. Реализуйте следующие примеры и проанализируйте полученные результаты:

Произведите проверку правильности выражения A·x=λ·x, проведя ее дважды – сначала на числовых значениях x и λ, а потом путем перемножения соответствующих матричных компонентов.

MathCAD позволяет рассмотреть и более общую задачу, называемою задачей на обобщенные собственные значения: A·x=λ·B·x. В ееформулировке помимо матрицы A присутствует еще одна квадратная матрица B. Для решения этой задачи имеются две встроенные функции:

- genvals(A,B) – вычисляет вектор v собственных значений, каждый из которых удовлетворяет задаче на обобщенные собственные значения;

- genvecs(A,B) – вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям в векторе v, который вычисляется с помощью genvals. В этой матрице i -й столбец является собственным вектором x, удовлетворяющим задаче на обобщенные собственные значения.

Задание 28. Реализуйте следующие примеры и проанализируйте полученные результаты:

1. Поиск обобщенных собственных векторов и собственных значений можно осуществить так:

2. Проверку правильности нахождения собственных векторов и собственных значений проведите так:

Современная вычислительная линейная алгебра – бурно развивающаяся наука. Главная проблема, рассматриваемая ею, - это проблема решения систем линейных уравнений. В настоящее время разработано множество методов, упрощающих эту задачу. Большинство методов основано на представлении матрицы в виде произведения других матриц специального вида, или матричных разложений. Как правило, после определенного разложения матрицы задача линейной алгебры существенно упрощается. В MathCAD имеется несколько встроенных функций, реализующих алгоритмы наиболее популярных матричных разложений: разложение Холецкого, QR- разложение, LU- разложение, сингулярное разложение [1].


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.