Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Топ:
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Дисциплины:
2017-05-23 | 370 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
В версию системы MathCAD 7. 0 PRO введен еще один расширенный оператор символьного вывода. Он задается нажатием клавиш Ctrl+ Shift+. (точка) или выбором из палитры символьных операций. Этот оператор имеет вид • • —>. В первый шаблон-прямоугольник вводится исходное выражение, а во второй — директивы символьных преобразований. Они будут описаны чуть позже; задаются эти директивы или вводом соответствующих ключевых слов, или из палитры символьных операций.
Кроме того, в один такой оператор можно ввести другой, с тем чтобы получить составной расширенный оператор символьного вывода и место для записи нескольких директив. Это позволяет намечать заданный путь символьных преобразований. На рис. 12. 1 приведены простейшие примеры применения символьных операций без использования системы SmarthMath и с ее использованием.
Несмотря на простоту примеров, приведенных на рис. 12. 1, они дают наглядное представление об отличительных особенностях реализации символьных операций с помощью операторов символьного вывода, которые были указаны выше.
Рис. 12. 1 Простейшие примеры применения символьных операций
Директивы системы SmartMath и их применение
Состав директив
При вводе стрелки —> после выражения фактически (по умолчанию) над ним исполняется операция Simplify (Упростить). Но что подразумевается под этим, ясно далеко не всегда, даже несмотря на то, что многие символьные операции система выполняет вполне очевидно, например вычисление интеграла или производной в символьном виде.
При необходимости выполняемую операцию можно изменить с помощью ряда ключевых слов:
simplify — упрощение выражений;
expand — разложение выражения по степеням;
|
factor — разложение выражения на простые дроби;
complex — преобразования в комплексной форме;
assume — присваивание переменным неопределенного значения, даже если до этого им были присвоены значения и заданы ограничения на значения переменных;
series — разложение в ряд по заданным переменным;
float — преобразование в формат чисел с плавающей точкой;
literally — запрет символьного преобразования для последующего выражения;
ФBparfac — разложение на элементарные дроби;
Фcoeffs — возвращает коэффициенты полинома;
ФBfourier — прямое преобразование Фурье;
Фlaplace — прямое преобразование Лапласа;
Фztrans — прямое Z-преобразование;
ФBinvfourier — обратное преобразование Фурье;
Фinvlaplace — обратное преобразование Лапласа;
Фinvztrans — обратное Z-преобразование;
ФMT ---> — транспонирование матрицы;
ФМ-1—» — инвертирование матрицы;
Ф¦М¦-> — вычисление детерминанта матрицы;
ФModifier — модифицированные команды:
* assume — вводное слово для приведенных ниже определений;
* real — для var=real означает вещественное значение var;
* RealRange — для var=RealRange(a,b) означает принадлежность вещественной var к интервалу [а,Ь];
» trig — задает направление тригонометрических преобразований.
Ключевые слова допустимо набирать только строчными буквами (кроме Modifier — первая буква в этом слове должна быть прописной). В новой версии MathCAD директивы охватывают все возможные символьные преобразования. При этом их даже больше, чем при использовании операций позиции Symbolics главного меню.
Примеры применения символьных директив
Простейшие примеры на символьные операции даны на рис. 12.2. В этих примерах полезно обратить внимание на множественность применения директив, особенно в примере на применение директивы подстановки substitute.
Рис. 12. 2 Примеры символьных преобразований с помощью системы SmartMath
Как видно из рис. 12. 1 и 12. 2, блоки системы SmartMath имеют следующие отличительные свойства:
дают хорошее визуальное представление операций;
имеют шаблоны для задания параметров и опций;
|
обеспечивают работу с функциями пользователя;
обеспечивают передачу данных от формулы к формуле;
допускают расширение, позволяющее использовать сразу несколько директив;
имеют конструкцию, схожую с конструкцией программных блоков.
На рис. 12. 3 показано еще несколько примеров применения символьных вычислений. Здесь особенно полезно присмотреться к технике применения разложения в ряд Тейлора и преобразования Лапласа.
Рис. 12. 3 Примеры применения символьных вычислений
Рис. 12. 4 Примеры на применение директив complex, assume и coeffs
Как нетрудно заметить, директива упрощения simplify не имеет параметров Директива разложения в ряд Тейлора series требует указания двух параметров задания начального значения переменной х и указания числа членов ряда Директивы преобразования Лапласа laplace и решения уравнений solve требуют одного параметра — указания имени переменной (в нашем случае х) С помощью директивы solve можно решать и системы уравнений — тогда ее параметр будет вектором неизвестных
Применение директив complex, assume и coeffs поясняет рис 124 Тут важно обратить внимание на двойственность применения ключевого слова assume Оно может применяться для отмены значений переменных (берется
Рис. 12. 5 Символьные операции с матрицами
Рис. 12. 6 Символьное вычисления интегралов
прямо из палитры символьных директив) и для указания статуса и ограничении переменных (берется из дополнительной палитры Modifiers)
Выполнение матричных операций в символьной форме особой специфики не имеет На рис 125 показаны основные операции с матрицами, включая их транспонирование и вычисления обратной матрицы и детерминанта матрицы. Для наглядности взята матрица небольшого (2х2) порядка
Рис. 12. 6 показывает применение символьных директив для вычисления интегралов Здесь, пожалуй, полезно обратить внимание на применение директивы float, позволяющей вычислить значение интеграла в виде обычного вещественного числа
Итак, мы рассмотрели большую часть символьных директив С оставшимися читатель может поработать самостоятельно, тем более что правила их применения уже были описаны
|
|
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!