Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Интересное:
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Дисциплины:
2017-05-23 | 367 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Необходимо отметить, что не всегда результат символьных операций выводится в окно редактирования. Иногда он оказывается настолько громоздким, что MathCAD использует специальную компактную форму его представления и помещает его в буфер обмена. Уже оттуда его можно вызвать в текстовом формате в окно редактирования, нажав клавишу F4 или клавиши Shift+ Ins. To же самое можно сделать с помощью команды Copy (Копировать) в позиции Edit (Правка) главного меню.
Записи математических выражений в буфере обмена напоминают их записи на языке Фортран:
• справедливы операторы арифметических операций+, -,* и /;
• возведение в степень обозначается как**;
• первая производная функции f (x) записывается в виде diff (f (x), x), а п-я производная в виде diff (f (x), x$n);
• частная производная обозначается как D, п-го порядка (D, n) и по п-му аргументу как (D [n]);
• интеграл с подынтегральной функцией/^) записывается как int (f (x), x);
• операторы суммы и произведения обозначаются как sum () и product ();
• композиция функций указывается символом @ [например, (exp@cos) (x) означает exp (sin (x)) \,
• кратная композиция указывается символами @@ [например, (f (@@3) (x) означает f (f (f (x)))};
• замещение любого корня уравнения указывается записью RootOf (уравнение) [например, оба корня i и -г уравнения Z** 2+ 1=0 представляются записью RootOf (Z** 2+ l)].
С помощью команды Save As... (Сохранить как) в позиции File папки обмена можно сохранить последнее содержимое буфера обмена в виде текстового файла. Это может быть полезным для осмысления и анализа полученного результата. В Windows 95 доступ к папке обмена обеспечивает приложение "Просмотр папки обмена", которое находится в папке "Стандартные" меню программ.
8. 20. Применение преобразований Лапласа для
|
Аналитического решения дифференциальных уравнений
Итак, если результаты символьных вычислений включают функции, не содержащиеся во входном языке системы, они помещаются в буфер обмена по запросу системы и могут быть вызваны оттуда командой Paste (Вставить). Тогда результаты имеют статус текстовых комментариев, т. е. в явном виде с ними дальнейшие действия проводить невозможно.
Однако это совсем не означает бесполезности таких результатов. Напротив, пользователь, владеющий приемами аналитических вычислений, может успешно использовать такие результаты для решения серьезных математических задач. Здесь мы остановимся на задаче получения аналитического решения для линейных дифференциальных уравнений. Сразу отметим, что системы компьютерной алгебры Mathematica 2. 2. 2 или Maple V R3/R4 легко решают подобные задачи встроенными средствами. Рассмотрим, как это можно сделать в системе MathCAD 6. 0 PRO, таких средств не имеющей.
Для получения решения можно воспользоваться преобразованиями Лапласа. Это иллюстрирует рис. 8. 22, на котором подробно показан процесс получения результата. Приходится вручную запускать прямое преобразование Лапласа, по его результатам составлять алгебраическое уравнение и после решения запускать обратное преобразование Лапласа — оно дает решение в виде временной зависимости
Рис. 8. 22 Пример решения дифференциального уравнения второго порядка с применением преобразований Лапласа
На рис 8. 23 приведено решение другого дифференциального уравнения Используется тот же метод решения, что и в предыдущем примере.
Оба примера наглядно показывают, что помещаемый в буфер обмена результат символьных операций может быть очень полезным и порой предоставлять возможности, которые нельзя получить прямым образом. Это расширяет области применения системы MathCAD
Рис. 8. 23 Пример решения другого дифференциального уравнения
Глава 9 Работа с окнами
|
|
История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!