Принцип действия биполярного транзистора — КиберПедия


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Принцип действия биполярного транзистора



Основные свойства транзистора определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору равномерное, то в ней отсутствует электрическое поле, и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует внутреннее электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом. БТ с однородной базой называютбездрейфовыми, а с неоднородной базой - дрейфовыми.

Биполярный транзистор можно использовать в трех схемах включения: с общей базой (ОБ) (рисунок 5.3, а), общим эмиттером (ОЭ) (рисунок 5.3, б), и общим коллектором (ОК) (рисунок 5.3, в). В обозначениях напряжений вторая буква индекса обозначает электрод, общий для обоих источников питания.

В общем случае возможно четыре варианта полярностей напряжения переходов, определяющих четыре режима работы транзистора. Они получили названия: активный режим, инверсный режим, режим насыщения (или режим двухсторонней инжекции) и режим отсечки.

а)
б) в)
Рис. 5.3. Схемы включения БТ: а) с ОБ; б) с ОЭ; в) с ОК.

 

В активном режиме к эмиттерному переходу приложено прямое напряжение (напряжение эмиттер – база UЭБ), а к коллекторному переходу - обратное (напряжение коллектор – база UКБ). Этому режиму соответствуют полярности источников питания и направления токов для p-n-p-транзистора, представленные на рисунке 5.4. В случае n-p-n транзистора полярности напряжения и направления токов изменяются на противоположные.

Эмиттерный переход осуществляет инжекцию дырок в тонкую базовую область, которая обеспечивает практически без потерь перемещение инжектированных носителей до коллекторного перехода. Коллекторный переход не создает потенциального барьера для подошедших носителей, ставших неосновными носителями заряда в базовой области, а, наоборот,

Рис. 5.4. Физические процессы в БТ

 

ускоряет их и поэтому переводит эти носители в коллекторную область. «Собирательная» способность этого перехода и обусловила название «коллектор».

Если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный - обратное UЭБ, то такой режим работы называется инверсным режимом. В этом случае транзистор «работает» в обратном направлении: из коллектора идет инжекция дырок, которые проходят через базу и собираются эмиттерным переходом, но при этом его параметры отличаются от первоначальных, т.к. концентрация примесей в коллекторе значительно меньше, чем в эмиттере и площади переходов различны.



Режим работы, когда напряжения на эмиттерном и коллекторном переходах являются прямыми одновременно, называют режимом двухсторонней инжекции или режимом насыщения. В этом случае и эмиттер, и коллектор инжектируют носители заряда в базу навстречу друг другу, и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода.

Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки, так как в этом случае через переходы протекают малые обратные токи.

Следует подчеркнуть, что классификация режимов производится по комбинации напряжений на переходах. В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ = -UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и определяется по общему правилу определения разности потенциалов UКБ = UКЭ + UЭБ. Т.к. UЭБ = -UБЭ, тo UКБ = UКЭ - UБЭ; при этом напряжения источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным - в противном случае. В схеме включения с общим коллектором (ОК) напряжение на коллекторном переходе определяется одним источником: UКБ = -UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ = UЭК + UКБ = UЭК - UБК, при этом правило знаков прежнее.

Токи в транзисторе

Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы включения с общей базой (рисунок 2.33), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.

В активном режиме на эмиттерном переходе действует прямое напряжение UЭБ. Прямой ток перехода при этом равен:



, (5.1)

где IЭ р, IЭ n – инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а IЭ РЕК - составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера. Относительный вклад этой составляющей в ток перехода IЭ в тем заметнее, чем меньше инжекционные составляющие IЭ р и IЭ n, определяющие прямой ток в случае идеализированного р-n-перехода. Если вклад IЭ РЕК незначителен, то вместо (5.1) можно записать:

. (5.2)

В сумме токов выражения (5.2) полезной является только дырочная составляющая IЭр, так как она будет участвовать в создании тока коллекторного перехода. «Вредные» составляющие тока эмиттера IЭ n и IЭ РЕК протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты IЭ n, IЭ РЕК должны быть уменьшены.

Эффективность работы эмиттерного перехода учитывается коэффициентом инжекции эмиттера:

, (5.3)

который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током IЭ РЕК:

. (5.4)

Коэффициент инжекции gЭ тем выше (ближе к единице), чем меньше отношение IЭ n/ IЭ р. Величина (IЭ n/ IЭ р ) << 1, если концентрация акцепторов в эмиттерной области p-n-p транзистора NАЭ на несколько порядков выше концентрации доноров NДБ в базе (NАЭ >> NДБ). Это условие, как правило, выполняется в транзисторах.

Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок - неосновных носителей базы. Этот градиент обуславливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок IБ РЕК, так что ток подходящих к коллекторному переходу дырок будет равен:

. (5.5)

Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса:

. (5.6)

Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение cБ тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами - основными носителями базовой области. Ток

IБ РЕК одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБ РЕК следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭ n.

Чтобы уменьшить потери на рекомбинацию, т.е. увеличить cБ, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров NДБ. Это совпадает с требованием NАЭ>>NДБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы WБ и диффузионной длины дырок в базовой области LpБ. Доказано, что имеется приближенное соотношение:

. (5.7)

Например, при WБ/Lp Б = 0,1 cБ = 0,995, что очень мало отличается от предельного значения, равного единице.

Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей, то ток за коллекторным переходом с учетом (5.6):

(5.8)

С учетом (5.4) и (5.6) получим

, (5.9)

где

. (5.10)

Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называют статическим коэффициентом передачи тока эмиттера.

Ток коллектора имеет еще составляющую IКБО, которая протекает в цепи коллектор – база при IЭ = 0 (холостой ход, «обрыв» цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном p-n-переходе (диоде).

Таким образом, полный ток коллектора с учетом (5.9) :

. (5.11)

Из (5.11) получим обычно используемое выражение для статического коэффициента передачи тока:

, (5.12)

числитель которого (IКIКБО) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IК р. Обычно рабочие токи коллектора IК значительно больше IКБ0, поэтому

. (5.13)

С помощью рис. 5.4 можно представить ток базы в виде:

. (5.14)

По первому закону Кирхгофа для общей точки:

. (5.15)

Как следует из предыдущего рассмотрения, IК и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы:

. (5.16)

Используя (5.11) и (5.16), получаем связь тока базы с током эмиттера:

. (5.17)

Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ = - IКБ0, т. е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. При значении I*Э = IКБ0 /(1-a) ток IБ = 0, а при дальнейшем увеличении тока эмиттера IЭ (IЭ>I*Э) ток базы оказывается положительным.

Подобно (5.11) можно установить связь IК с IБ. Используя (5.11) и (5.17), получаем:

, (5.18)

где

; (5.19)

- статический коэффициент передачи тока базы. Так как значение a обычно близко к единице, то b может быть значительно больше единицы (b >>1). Например, при a = 0,99 b = 99. Из (5.19) можно получить соотношение:

. (5.20)

Очевидно, что коэффициент b есть отношение управляемой (изменяемой) части коллекторного тока (IК - IКБ0) к управляемой части базового тока

(IБ + IКБ0).

Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ = 0. Введя обозначение:

, (5.21)

можно вместо (5.19) записать:

. (5.22)

Отсюда очевиден смысл введенного обозначения IКЭ0: это значение тока коллектора при нулевом токе базы (IБ = 0) или при «обрыве» базы. При IБ = 0

IК = IЭ, поэтому ток IКЭ0 проходит через все области транзистора и является «сквозным» током, что и отражается индексами «К» и «Э» (индекс «0» указывает на условие IБ = 0).






Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.