Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Топ:
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Генеалогическое древо Султанов Османской империи: Османские правители, вначале, будучи еще бейлербеями Анатолии, женились на дочерях византийских императоров...
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Интересное:
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Дисциплины:
2017-05-14 | 984 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Они применяются для преобразования высокочастотных и импульсных сигналов. В данных диодах необходимо обеспечить минимальные значения реактивных параметров, что достигается благодаря специальным конструктивно-технологическим мерам.
Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью. Для уменьшения времени жизни t используется легирование материала (например, золотом), что создает много ловушечных уровней в запрещенной зоне, увеличивающих скорость рекомбинации и, следовательно, уменьшается СДИФ.
Разновидностью универсальных диодов является диод с короткой базой. В таком диоде протяженность базы меньше диффузионной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носителей в базе, а фактически меньшим временем нахождения (временем пролета). Однако осуществить уменьшение толщины базы при большой площади p-n перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площади являются маломощными.
В настоящее время широко применяются диоды с p-i-n структурой, в которой две сильнолегированные области p- и n-типа разделены достаточно широкой областью с проводимостью, близкой к собственной (i-область). Заряды донорных и акцепторных ионов расположены вблизи границ i-области. Распределение электрического поля в ней в идеальном случае можно считать однородным (в отличие от обычного p-n перехода). Таким образом, i-область с низкой концентрацией носителей заряда, но обладающей диэлектрической проницаемостью можно принять за конденсатор, «обкладками» которого являются узкие (из-за большой концентрации носителей в p- и n-областях) слои зарядов доноров и акцепторов. Барьерная емкость p-i-n диода определяется размерами i-слоя и при достаточно широкой области от приложенного постоянного напряжения практически не зависит.
|
Особенность работы p-i-n диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое сопротивление резко падает. При обратном напряжении происходит экстракция носителей из i-области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротивления i области по сравнению с равновесным состоянием. Поэтому для p-i-n диода характерно очень большое отношение прямого и обратного сопротивлений, что благоприятно сказывается при использовании их в переключательных режимах.
В качестве высокочастотных и универсальных диодов используются структуры Шоттки и Мотта. В этих приборах процессы прямой проводимости определяются только основными носителями заряда. Таким образом, у рассматриваемых диодов отсутствует диффузионная емкость, связанная с накоплением и рассасыванием носителей заряда в базе, что и определяет их хорошие высокочастотные свойства.
Отличие барьера Мотта от барьера Шоттки состоит в том, что тонкий i-слой создан между металлом М и сильно легированным полупроводником n+, так что получается структура М-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщина обедненного слоя в n+-области очень мала и не зависит от напряжения. И поэтому барьерная емкость практически не зависит от напряжения и сопротивления базы.
Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шоттки, которые в отличие от p-n перехода почти не накапливают неосновных
носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления tВОСТ (около 100 пс).
Разновидностью импульсных диодов являются диоды с накоплением заряда (ДНЗ) или диоды с резким восстановлением обратного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (рисунок 3.6). При этом значение t1 может быть значительным, но t2 должно быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных устройствах.
|
Рис. 3.6. Временные диаграммы тока через импульсный диод.
Получение малой длительности t2 связано с созданием внутреннего поля в базе около обедненного слоя p-n перехода путем неравномерного распределения примеси. Это поле является тормозящим для носителей, пришедших через обедненный слой при прямом напряжении, и поэтому препятствует уходу инжектированных носителей от границы обедненного слоя, заставляя их компактнее концентрироваться вблизи границы. При подаче на диод обратного напряжения (как и в обычном диоде) происходит рассасывание накопленного в базе заряда, но при этом внутреннее электрическое поле уже будет способствовать дрейфу неосновных носителей к обедненному слою перехода. В момент t1, когда концентрация избыточных носителей на границах перехода спадает до нуля, оставшийся избыточный заряд неосновных носителей в базе становится очень малым, а, следовательно, оказывается малым и время t2 спадания обратного тока до значения I0.
Стабилитроны и стабисторы
Стабилитроном называется полупроводниковый диод, на обратной ветви ВАХ которого имеется участок с сильной зависимостью тока от напряжения (рисунок 3.7), т.е. с большим значением крутизны D I /D U (D I = IСТ MAX – IСТ MIX). Если такой участок соответствует прямой ветви ВАХ, то прибор называется стабистором.
Стабилитроны используются для создания стабилизаторов напряжения.
Напряжение стабилизации UСТ соответствует напряжению электрического (лавинного) пробоя p-n перехода (рис. 3.7). Возможность получения стабильного напряжения характеризуются дифференциальным сопротивлением стабилитрона rД = D U /D I, которое должно быть как можно меньше.
К параметрам стабилитрона относятся: напряжение стабилизации UСТ, минимальный и максимальный токи стабилизации IСТ min и ICT max, дифференциальное сопротивление rД, а так же температурный коэффициент напряжения стабилизации (TKU) – относительное изменение напряжения стабилизации Δ UСТ при изменении температуры корпуса прибора на 1о С.
|
Промышленностью выпускаются стабилитроны с параметрами: Ucт от 1,5 до 180 В, токи стабилизации от 0,5 мА до 1,6 А.
Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.
Рис. 3.7. К определению
параметров стабилитронов
Простейшая схема стабилизации напряжения с использованием стабилитрона представлена на рис. 3.8. Сопротивление нагрузки RН подключается параллельно стабилитрону, гасящее сопротивление RГ служит для ограничения тока через стабилитрон.
Рис. 3.8. Схема включения стабилитрона
Тогда:
(3.3)
В результате уравнение нагрузочной прямой примет вид:
(3.4)
Точка пересечения этой прямой с ВАХ стабилитрона есть рабочая точка. На рис. 3.9 приведена характеристика стабилитрона и две нагрузочные прямые при двух напряжениях питания UП1 и UП2. При изменении напряжения источника питания (напряжения на входе схемы) нагрузочная прямая перемещается параллельно самой себе.
Рис.3.9. Характеристика стабилитрона с нагрузочными характеристиками.
Т.к. входное напряжение может, как увеличиваться, так и уменьшаться, то рабочая точка выбирается на середине участка стабилизации. При этом ток, текущий через стабилитрон IСТ1 и IСТ2 будет изменяться в соответствии с колебаниями входного напряжения, но напряжение на выходе схемы (напряжение на стабилитроне) будет оставаться практически неизменным.
В случае изменения сопротивления нагрузки при постоянном напряжении источника питания изменяется наклон нагрузочной прямой. При этом так же, как и в рассмотренном выше случае, изменяться будет ток, текущий через стабилитрон, а напряжение на стабилитроне останется постоянным.
Кроме стабилизации постоянного напряжения стабилитроны используют в стабилизаторах и ограничителях импульсного напряжения, в схемах выпрямления, в качестве управляемых емкостей, шумовых генераторов и элементов межкаскадных связей в усилителях постоянного тока и импульсных устройствах.
|
Разновидностью стабилитрона является стабистор, в котором для стабилизации напряжения используется прямая ветвь ВАХ. Отличительная особенность стабисторов по сравнению со стабилитронами заключается в меньшем напряжении стабилизации, составляющем примерно 0,7 В при комнатной температуре. Стабисторы могут применяться совместно со стабилитронами в качестве термокомпенсирующих элементов.
Варикапы
Варикапом называется полупроводниковый диод, используемый в качестве электрически управляемой емкости с достаточно высокой добротностью в диапазоне рабочих частот. В нем используется свойство p-n перехода изменять барьерную емкость под действием внешнего напряжения (рис. 3.10).
Основные параметры варикапа: номинальная емкость СН при заданном номинальным напряжением UН (обычно 4 В), максимальное обратное напря- жение UОБР MAX и добротность Q.
Рис. 3.10. Зависимость емкости варикапа от напряжения.
Основное применение варикапов – электрическая перестройка резонансной частоты колебательных контуров. Включение варикапа в цепь для этой цели выполняют по схеме в соответствии с рис. 3.11.
Обратное управляющее напряжение на варикап подается через высокоомный резистор R, предотвращающий шунтирование контура малым внутренним сопротивлением источника, и тем самым исключается снижение добротности контура. Постоянный конденсатор С необходим для того, чтобы исключить короткое замыкание варикапа индуктивностью по постоянному напряжению. Его величина всегда много больше переменной емкости варикапа. Изменяя величину управляющего напряжения можно регулировать емкость варикапа и, следовательно, резонансную частоту контура.
Рис.3.11. Схема включения варикапа в колебательный контур
Параметры схемы выбирают на основе соотношений:
, где (3.5)
Основным полупроводниковым материалом для изготовления варикапов служит кремний. Используется также арсенид галлия, обеспечивающий меньшее сопротивление базы.
Для увеличения добротности варикапа используют барьер Шоттки; эти варикапы имеют малое сопротивление потерь, так как в качестве одного из слоев диода используется металл.
В настоящее время существует несколько разновидностей варикапов, применяемых в различных устройствах непрерывного действия. Это параметрические диоды, предназначенные для усиления и генерации СВЧ-сигналов, и умножительные диоды, предназначенные для умножения частоты в широком диапазоне частот. Иногда в умножительных диодах используется и диффузионная емкость.
Контрольные вопросы к разделу 3
Что называется полупроводниковым диодом?
Назначение и параметры выпрямительных диодов.
Назначение и требования к ВЧ диодам
|
Назначение и параметры стабилитронов
Назначение и параметры варикапов
ПОЛЕВЫЕ ТРАНЗИСТОРЫ
В полевых транзисторах, управление потоком основных носителей заряда осуществляется в области полупроводника, называемой каналом, путем изменения его поперечного сечения с помощью электрического поля. Полевой транзистор имеет следующие три электрода: исток, из которого вытекают носители в канал, сток, в который носители втекают из канала, и затвор, предназначенный для регулирования тока путем изменения поперечного сечения канала.
Преимуществом полевых транзисторов является также и то, что ассортимент полупроводниковых материалов для их изготовления значительно шире (так как они работают только с основными носителями заряда), благодаря чему возможно создание, например, температуростойких приборов. Большое значение также имеют низкий уровень шумов и высокое входное сопротивление этих транзисторов.
Существует несколько разновидностей полевых транзисторов, различающихся физической структурой и способом управления проводимостью канала, которые в ряде устройств работают более эффективно, чем биполярные.
|
|
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!