Реальная вольтамперная характеристика p-n перехода — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Реальная вольтамперная характеристика p-n перехода

2017-05-14 680
Реальная вольтамперная характеристика p-n перехода 0.00 из 5.00 0 оценок
Заказать работу

 

При выводе уравнения (1.37) не учитывались такие явле­ния, как падение напряже­ния на сопротивлении нейтральных областей полупровод­ника при прямом включении. При обрат­ных напряжениях термогенерация носителей в p-n переходе, поверхностные утечки тока, а также явления пробоя.

Отличие реальной характеристики от теоретической на прямой ветви, в основном, обусловлены распределенным (объёмным) сопротивлением дырочной и электронной областей rp и rn за пределами p-n перехода (рисунок 1.11).

Рис. 1.11 Эквивалентная схема реального p-n перехода

 

Если сопротивление p-n перехода обозначить rp-n, то кристалл полупроводника с запирающим слоем можно представить в виде последовательного соединения рези­сторов rp-n и r1= rp + rn.

При прохождении тока IПР на сопротивлении r1 падает часть напряжения внешнего источника и на p-n переходе действует напряжение Up-n = UПР – IПР×r1. Уравнение вольтамперной характеристики в этом случае может быть записано в следующем неявном виде:

.

Рис. 1.12 Упрощенная эквивалентная схема p-n перехода с распределенным сопротивлением полупроводника.

 

Поэтому экспериментальная вольтам­перная характеристика p-n перехода (кривая 2 на рис. 1.13) отличается от теоретической (кривая 1).

Поскольку Up-n < UПР реальная характеристика идет ниже теоретической. Когда напряжение на запирающем слое становится равным контактной разности потенциа­лов, запирающий слой исчезает, и дальнейшее увеличение тока ограничивается распределенным сопротивлением по­лупроводников p- и n-типа. Таким образом, в точке С при UПР = UК вольтамперная характеристика переходит в пря­мую линию.

 

Рис. 1.13 Отличие реальной вольтамперной характеристики p-n перехода

от теоретической.

 

При обратном включе­нии p-n перехода отли­чия обусловлены генера­цией

носителей зарядов и пробоем p-n перехода. Количество генерируемых носителей пропорциональ­но объему запирающего слоя, который зависит от ширины p-n перехода. По­скольку ширина запираю­щего слоя пропорциональ­на , ток генерации будет расти при увеличе­нии обратного напряже­ния. Поэтому на реальной характеристике при увеличении обратного напряжения до определенного значения наблюдается небольшой рост об­ратного тока. Возрастанию обратного тока способствуют также токи утечки.

При некотором обратном напряжении наблюдается рез­кое возрастание обратного тока. Это явление называют пробоем p-n перехода. Существуют три вида пробоя: тун­нельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрическо­го пробоя

и связаны с увеличением напряженности элек­трического поля в переходе. Тепловой пробой определяет­ся перегревом перехода.

Туннельный пробой обусловлен прямым переходом элек­тронов из валентной зоны одного полупроводника в зону проводимости другого, что становится возможным, если напряженность электрического поля в p-n переходе из кремния достигает значения 4×105 В/см, а из германия -2×105 В/см. Такая большая напряженность электричес­кого поля возможна при высокой концентрации примесей в p- и n-областях, когда толщина p-n перехода становит­ся весьма малой (см. формулу (1.31)). Под действием силь­ного электрического поля валентные электроны вырыва­ются из связей. При этом образуются парные заряды электрон-дырка, увеличивающие обратный ток через переход. На рис. 1.10 кривая 5 представляет собой обратную ветвь вольт-амперной характеристики перехода, соответствую­щую туннельному пробою.

В широких p-n переходах, образованных полупровод­никами с меньшей концентрацией примесей, вероятность туннельного просачивания электронов уменьшается и бо­лее вероятным становится лавинный пробой. Он возника­ет тогда, когда длина свободного пробега электрона в по­лупроводнике значительно меньше толщины p-n перехода. Если за время свободного пробега электроны приобретают кинетическую энергию, достаточную для ионизации атомов в p-n переходе, наступает ударная ионизация, со­провождающаяся лавинным размножением носителей заря­дов. Образовавшиеся в результате ударной ионизации сво­бодные носители зарядов увеличивают обратный ток пере­хода. Увеличение обратного тока характеризуется коэф­фициентом лавинного умножения М:

, (1.40)

где UПРОБ - напряжение начала пробоя; m зависит от ма­териала полупроводника. На рис 1.11 лавинному пробою соответствует кривая 4.

Тепловой пробой обусловлен значительным ростом ко­личества носителей зарядов в p-n переходе за счет нару­шения теплового режима. Подводимая к p-n переходу мощность Рподв = IобрUобр расходуется на его нагрев.

Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности. Отводимая от p-n перехода мощность Ротв пропорциональна разно­сти температур перехода Tпер и окружающей среды Токр:

,

где Rт - тепловое сопротивление, 0К/Вт, определяющее перепад температур, необходимый для отвода 1 Вт мощнос­ти от p-n перехода в окружающую среду.

При плохих условиях отвода теплоты от перехода воз­можен его разогрев до температуры, при которой происхо­дит тепловая ионизация атомов. Образующиеся при этом носители заряда увеличивают обратный ток, что приводит к дальнейшему разогреву перехода. В результате такого нарастающего процесса p-n переход недопустимо разогре­вается и возникает тепловой пробой, характеризующийся разрушением кристалла (кривая 3).

Увеличение числа носителей зарядов при нагреве p-n перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на об­ратной ветви вольтамперной характеристики при тепло­вом пробое появляется участок с отрицательным диффе­ренциальным сопротивлением (участок АВ на рис. 1.13).


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.