Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Топ:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Оснащения врачебно-сестринской бригады.
Генеалогическое древо Султанов Османской империи: Османские правители, вначале, будучи еще бейлербеями Анатолии, женились на дочерях византийских императоров...
Интересное:
Влияние предпринимательской среды на эффективное функционирование предприятия: Предпринимательская среда – это совокупность внешних и внутренних факторов, оказывающих влияние на функционирование фирмы...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Дисциплины:
2017-05-14 | 659 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
В результате взаимодействия полупроводника и окружающей среды на поверхности кристалла образуются различные соединения, отличающиеся по своим свойствам от основного материала. Кроме того, обработка кристалла приводит к дефектам кристаллической решетки на поверхности полупроводника. По этим причинам возникают поверхностные состояния, повышающие вероятность появления свободных электронов или незаполненных ковалентных связей. Энергетические уровни поверхностных состояний могут располагаться в запрещенной энергетической зоне и соответствовать донорным и акцепторным примесям.
Поверхностные состояния меняют концентрацию носителей заряда, и в приповерхностном слое полупроводника возникает объемный заряд, приводящий к изменению уровня Ферми. Поскольку в состоянии равновесия уровень Ферми во всем кристалле полупроводника одинаков, поверхностные состояния вызывают искривление энергетических уровней в приповерхностном слое полупроводника.
В зависимости от типа полупроводника и характера поверхностных состояний может происходить обеднение или обогащение поверхности кристалла носителями заряда.
Обеднение возникает в том случае, если поверхностный заряд совпадает по знаку с основными носителями заряда. На рис. 1.25 показано образование обедненного слоя на поверхности полупроводника n-типа при такой плотности поверхностных состояний, что уровни Win и Wфn не пересекаются. Повышение плотности пространственного заряда может привести к пересечению уровня Ферми с уровнем середины запрещенной зоны (рис. 1.26), что соответствует изменению типа электропроводности у поверхности полупроводника. Это явление называют инверсией типа электропроводности, а слой, в котором. оно наблюдается, - инверсным слоем.
|
Рис. 1.25 Образование обедненного слоя на поверхности полупроводника n-типа. | Рис. 1.26 Изменение типа электропроводимости на поверхности полупроводника n-типа. |
Если знаки поверхностного заряда и основных носителей противоположны, происходит обогащение приповерхностной области основными носителями зарядов. Такую область называют обогащенным слоем (рис. 1.26).
Электропроводность приповерхностного слоя полупроводника может изменяться под действием электрического поля, возникающего за счет напряжения, прикладываемого к металлу и полупроводнику, разделенным диэлектриком. Если предположить, что до включения напряжения поверхностные состояния на границе полупроводника и диэлектрика отсутствуют, то электропроводности приповерхностного слоя и объема полупроводника будут одинаковыми.
При включении напряжения между металлом и полупроводником возникает электрическое поле, и на поверхности металла и в приповерхностном слое полупроводника, как на пластинах конденсатора, накапливаются заряды. Например, если полупроводник электронный и к нему прикладывается отрицательное напряжение, то под действием электрического поля у
Рис. 1.27 Образование обогащенного слоя на поверхности полупроводника n-типа. | Рис. 1.28 График изменения типа электропроводности на поверхности полупроводника. |
поверхности увеличиваются концентрация электронов и электропроводность приповерхностного слоя полупроводника (см. рис. 1.27). При изменении полярности напряжения концентрация электронов в приповерхностном слое уменьшается, а дырок - увеличивается. В связи с этим электропроводность приконтактной области уменьшается, стремясь к собственной. Увеличение напряжения приводит к тому, что концентрация дырок становится выше концентрации электронов и происходит изменение (инверсия) типа электропроводности слоя. При этом электропроводность приповерхностного слоя увеличивается. Зависимость электропроводности приповерхностного слоя полупроводника n-типа от напряжения показана на рис. 1.28. Это явление принято называть эффектом поля.
|
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ
Классификация
Классификация полупроводниковых диодов производится по следующим признакам:
- методу изготовления перехода: сплавные, диффузионные, планарные, точечные, диоды Шоттки и др.;
- материалу: германиевые, кремниевые, арсенидо-галлиевые и др.;
- физическим процессам, на использовании которых основана работа диода: туннельные, лавинно-пролетные, фотодиоды, светодиоды, диоды Ганна и др.;
- назначению: выпрямительные, универсальные, импульсные, детекторные, стабилитроны, варикапы, параметрические, смесительные, СВЧ-диоды и др.
Некоторые из указанных типов диодов по назначению будут рассмотрены в настоящей главе, а другие - в соответствующих учебных пособиях.
Выпрямительные диоды
Выпрямительными обычно называют диоды, предназначенные для преобразования переменного напряжения в постоянное. В зависимости от частоты и формы переменного напряжения они делятся на низкочастотные, высокочастотные и импульсные. Низкочастотные служат для выпрямления напряжения промышленной частоты (50 или 400 Гц). В высокочастотных частота выпрямляемого напряжения составляет десятки кГц. Основой диода является обычный p-n переход. В плоскостных диодах p-n переход имеет достаточную площадь для того, чтобы обеспечить большой прямой ток. Для получения больших обратных (пробивных) напряжений диод обычно выполняется из высокоомного материала.
Основными параметрами, характеризующими выпрямительные диоды, являются (рис. 3.1):
· максимальный прямой ток IПР MAX,
· падение напряжения UПР на диоде при заданном значении прямого тока IПР (или наоборот) (UПР» 0,3…0,7 В для германиевых и UПР» 0,8…1,2 В для кремниевых диодов);
· максимально допустимое постоянное обратное напряжение диода UОБР MAX,
· обратный ток IОБР при заданном обратном напряжении UОБР (значение обратного тока германиевых диодов на два-три порядка больше, чем у кремниевых);
· диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;
|
· рабочий диапазон температур (германиевые диоды работают в диапазоне
-60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов).
Рис. 3.1. К определению параметров выпрямительных диодов
На рисунке 3.2 приведена схема включения диода с нагрузкой. При этом напряжение генератора UГ делится между нагрузочным сопротивлением и диодом:
. (3.1)
Рис.3.2. Схема включения диода с нагрузкой | Рис. 3.3. К определению параметров схемы включения диода с нагрузкой |
Очевидно, что ток, протекающий через резистор и диод одинаковый.
Учитывая, что UR=I∙R, получаем
. (3.2)
Выражение (3.2) является уравнением нагрузочной прямой (рисунок 3.3). ВАХ диода (прямая ветвь) имеет экспоненциальный вид. Точка А на ВАХ, для которой выполняется условие равенства токов, называется рабочей точкой, а величина - сопротивлением цепи по постоянному току.
Схема простейшего выпрямителя имеет вид в соответствии с рисунком 3.4. Она включает генератор переменного напряжения, диод и последовательно включенный с диодом нагрузочный резистор.
Осциллограммы напряжений и токов приведены на рисунке 3.5.
При работе с переменным сигналом, входное напряжение есть UГ(t) (рисунок 3.5 а), а выходное – UН(t). В промежутки времени, когда к диоду приложено прямое напряжение (положительный полупериод), его сопротивление оказывается небольшим, и форма тока в цепи будет повторять форму входного напряжения в соответствии с рисунком 3.5, б и все входное напряжение будет практически падать на резисторе (рисунок 3.5 б). При отрицательном полупериоде диод смещен в обратном направлении, его сопротивление достаточно велико, ток в цепи практически становится равным обратному току диода, и большая часть входного напряжения упадет на диоде (рисунок 3.5 в).
Рис. 3.4. Схема включения диода на переменном токе а) и
Для того чтобы из пульсирующего напряжения выделить постоянную составляющую, в схему выпрямления параллельно резистору включают конденсатор (на рисунке 3.4 изображен пунктиром). Тогда выходное напряжение при положительном полупериоде станет определяться напряжением на емкости нагрузки CН и конденсатор при этом будет заряжаться током диода, а при отрицательном полупериоде – соответственно разряжаться через сопротивление нагрузки (рисунок 3.5 г, кривая 1 – при отсутствии конденсатора, кривые 2 и 3 с увеличением номинала емкости соответственно. Величины CН и RН подбирают таким образом, чтобы пульсации выходного напряжения оставались не выше заданных пределов.
|
Рис. 3.5. Эпюры напряжений и токов
При протекании больших прямых токов IПР на диоде выделяется соответствующая мощность. Для отвода данной мощности и исключения перегрева диод должен иметь большую площадь p-n перехода, корпуса и выводов. Для улучшения теплоотвода используются радиаторы или различные способы принудительного охлаждения (воздушного или даже жидкостного).
Среди выпрямительных диодов следует особо выделить диод с барьером Шоттки. Этот диод характеризуется высоким быстродействием и малым падением напряжения (UПР < 0,6 В). К недостаткам диода следует отнести малое пробивное напряжение и большие обратные токи.
Выпрямительные диоды обычно подразделяются на диоды малой, средней и большой мощности, рассчитанные на выпрямленный ток до 0,3 А, от 0,3 А до 10 А и свыше 10 А соответственно.
Для работы с высокими напряжениями (свыше 1000 В) предназначены выпрямительные столбы, представляющие собой последовательно соединенные p-n переходы, конструктивно объединенные в одном корпусе. Выпускаются также выпрямительные матрицы и блоки, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие
IПР MAX до 1 А и UОБР MAX до 600 В.
|
|
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!