Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Физико-химические свойства нефтей

2017-05-13 780
Физико-химические свойства нефтей 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

 

Плотность и молекулярная масса

Плотностью называется количество покоящейся массы в единице объема. Определение плотности нефти и нефтепродуктов весьма облегчает возможные расчеты, связанные с расчетом их массового количества. Учет количества нефти и нефтепродуктов в объемных единицах вызывает некоторые неудобства, т. к. объем жидкости меняется с изменением температуры. Плотность имеет размерность кг/м3. Поэтому, зная объем и плотность, при приеме, отпуске и учете нефти и нефтепродуктов можно выражать их количество в массовых единицах, т. к. масса не зависит от температуры.

На практике часто имеют дело с относительной плотностью нефти и нефтепродукта, которая определяется отношением их массы при температуре определения к массе чистой воды при +4°С, взятой в том же объема. Плотность воды при +4°С имеет наибольшее значение и равна 1000 кг/м3. Относительную плотность принято определять при +20°С, что обозначается символом ρот. Относительная плотность нефтей и нефтепродуктов при +20°С колеблется в пределах от 0,7 до 1,07.

Удельным весом называется вес единицы объема, т.е. сила притяжения к земле единицы объема вещества.

(1)

где – r плотность вещества, кг/м; g – ускорение силы тяжести.

Плотность и удельный вес нефти и нефтепродуктов зависят от температуры. Для пересчета плотности при одной температуре на плотность при другой может служить следующая формула

(1)

где x – поправка на изменение плотности при изменении температуры на 1 °С; r20 – плотность нефти или нефтепродукта при t = +20°С.

При попадании механических примесей, испарении, растворении в воде, окислении, эмульгировании, солнечной радиации изменяются масса и свойства нефти. плотность нефти – важный фактор, который следует учитывать при очистке водных поверхностей. При плотности нефти, приближающейся к 900 кг/м3, возникает угроза ее осаждения на дно. Это же явление наблюдается и при уменьшении плотности воды вследствие понижения ее температуры с 4 до 0°С. Однако нефть может всплыть на поверхность даже через большой промежуток времени при повышении ее температуры и соответствующем изменении плотности.

Плотность большинства нефтей (в том числе северных месторождений Тюменской области (СРТО), (см. табл. 1), исследованных в ТюмГНГУ, находится в пределах 825÷900 кг/м3.

Недостаточное знание свойств нефти, например, попавшей в воду в результате утечки или залпового сброса, приводит к тактическим ошибкам при ликвидации нефтяного загрязнения. Нередко, отождествляя свойства нефтяного пятна на поверхности воды со свойствами нефти, такое пятно пытаются поджечь. Однако без специальной подготовки это сделать невозможно. Следует учитывать, что нефтяное пятно взаимодействует с водой и воздухом, образуя эмульсию с трудно прогнозируемыми характеристиками. Поскольку сбор нефти с поверхности воды почти всегда осуществляется с помощью технических средств, необходимо учитывать наличие в нефтяном загрязнении фракций с температурой вспышки паров менее 60°С, недопустимых с точки зрения пожарной безопасности, наличия пыли, а также наличия растворенного газа.

 

 

Таблица 1

Физико-химические свойства нефтей

Месторождение нефти Плот-ность при 20°С, кг/м3 Кинематическая вязкость, сСт, при: Температура, °С
t=20°С t=50°C застывания кипения
Ромашкинское   14,22 5,9 - +65
Туймазинское   7,072 3,24 -59 -
Мухановское   7,65 3,46 -8 -
Узеньское   при t=40° 24,0 11,2 +31 +77
Трехозерное   9,75 2,98 - +85,5
Тетерево-Мартымьинское   4,12 2,17 - +61
Правдинское   10,76 4,75 - +72
Салымское   4,54 2,17 ниже -16 +50
Южно-Балыкское   16,58 8,53 - +81
Мамонтовское   21,51 8,15 - +90
Усть-Балыкское   17,48 8,37 - +71,7
Лянторское   16,14 7,11 - +80
Зап.-Сургутское   41,60 12,1 - +84
Холмогорское   7,83 3,53 - +64
Покачаевское   5,52 3,88 -9 +79
Мегионское   7,82 3,56 - +77
Советское   6,13 3,41 - +62
Самотлорское   4,94 2,49 - +59
Варьеганское   4,37 1,78 -1 +32
Первомайское   4,30 2,14 ниже –16 +57

Вязкость нефтей и нефтепродуктов

Одной из наиболее характерных особенностей жидкостей является способность изменять свою форму, под действием внешних сил. Это свойство жидкости объясняется скольжением ее молекул относительно друг друга. Одна и та же сила создает в разных жидкостях разные скорости перемещения слоев, отстоящих один от другого на одинаковые расстояния. Однако способность молекул к скольжению не бесконечно велика, поэтому Ньютон рассматривает вязкость как «недостаток скольжения». Обычно вязкостью или внутренним трением называют свойство жидкости сопротивляться взаимному перемещению ее частиц, вызываемому действием приложенной к жидкости силы.

Внутреннее трение, характеризуемое величиной η, немецкий ученый М. Якоб в 1928 году предложил называть динамической вязкостью. В технической литературе за η утвердилось наименование абсолютной вязкости, так как эта величина выражается в абсолютных единицах. Однако в абсолютных единицах. можно выражать также и единицы кинематической и удельной вязкости. Термин «динамическая вязкость» соответствует физическому смыслу η, так как согласно учению о вязкости η входит в уравнение, связывающее силу внутреннего трения с изменением скорости на единицу расстояния, перпендикулярного к плоскости движущейся жидкости.

Впервые же динамическая вязкость была выведена врачом Пуазейлем в 1842 г. при изучении процессов циркуляции крови в кровеносных сосудах. Формула Пуазейля в современной редакции выглядит следующим образом:

где η – коэффициент внутреннего трения (динамическая вязкость); Р – давление, при котором происходило истечение жидкости; τ – время истечения жидкости в объеме V, L – длина капилляра; г – радиус капилляра.

Единицей динамической вязкости является сила, необходимая для поддержания разности скоростей, равной 1 м/с, между двумя параллельными слоями жидкости площадью 1 м2 находящимися друг от друга на расстоянии 1 м, т.е. единицей измерения динамической вязкости в системе СИ является

Н × с/м2 или Па × с.

Единица динамической вязкости, выраженная в физической системе измерения СГС, в честь Пуазейля называется пуазом, т.е. за единицу динамической вязкости принимают сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев площадью 1 см2, отстоящих друг от друга на 1 см, под влиянием внешней силы в 1 дн при скорости перемещения в 1 см 1 с. Динамическую вязкость при температуре t обозначают ηt.

Величина, обратная динамической вязкости, носит название текучести и обозначается знаком Т.

(2.22)
Жидкости, обладающие свойством изотермического самопроизвольного увеличения прочности структуры во времени и восстановления структуры после ее разрушения, называются парафинистые нефти. При технических расчетах, а также при контроле качества нефтей и нефтепродуктов широкое распространение получил коэффициент кинематической вязкости, который представляет собой отношение коэффициента динамической вязкости m к плотности жидкости при той же температуре

 
 

 

 


В физической системе единиц широкое применение имеет единица кинематической вязкости в см2/с (стокс – Ст.) и мм2/с (сантистокс - сСт). Таким образом, 1 ст представляет собой вязкость жидкости, плотность которой равна 1г/1мл и сила сопротивления которой взаимному перемещению двух слоев жидкости площадью 1 см2, находящихся на расстоянии 1 см один от другого и перемещающихся один относительно другого со скоростью 1 см/с, равна 1 дн.

Вязкость нефтей и нефтепродуктов зависит от температуры, увеличиваясь с ее понижением. Для выражения зависимости вязкости от температуры предложено много различных формул. Наибольшее применение для практических расчетов подучила формула Рейнольдса-Филонова

(3)

(4)

где u – коэффициент крутизны вискограммы, 1/К; n*, n – кинематическая вязкость при известной температуре Тж и при температуре Т; e – основание натурального логарифма.

Для нахождения коэффициента крутизны вискограммы для данного продукта достаточно знать значения вязкостей при двух температурах Т1 и Т2.

Динамическая и кинематическая вязкости – это вполне определенные физические характеристики, которые, как и все другие величины, выражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчетная величина, а как практическая характеристика нефтепродукта, ее принято выражать не в абсолютных, а в относительных, или условных, единицах.

Вязкость нефти изменяется в широких пределах и зависит от ее состава, количества растворенного газа, примесей в некоторой степени, от давления, температуры, увеличиваясь с ее понижением.

Пересчет вязкости с одной температуры на другую связан с некоторыми особенностями и на практике иногда сопровождается ошибками. В справочной литературе обычно приводятся сведения о вязкости нефтей при весьма ограниченных условиях и значениях температур. Чаще всего это температуры 20 и 50°С или 50 или 100°С. Нахождение коэффициента крутизны вискограммы позволяет определить вязкость только в интервале заданных температур. А вот интерполяция результатов вне заданных интервалов недопустима, особенно для высоковязких и парафинистых нефтей. С уменьшением температуры ошибка расчетов может составлять 200¸300%, а в ряде случаев расчет может быть связан с абсурдным результатом, поскольку многие нефти теряют текучесть при достаточно высоких температурах 20¸25°С.

Давление насыщенных паров

Анализируя материал предыдущего раздела можно сформулировать другое определение давления насыщенных паров – это давление пара, находящегося в равновесии с жидкостью при данных термодинамических условиях и соотношении объемов фаз. Такая характеристика позволяет судить о склонности нефтей и нефтепродуктов к образованию паровых пробок, например в трубопроводе, потерях при испарении и хранении в резервуарах и т.д., и является основным показателем испаряемости и стабильности товарных нефтепродуктов.

Давление насыщенных паров рS химически однородных жидкостей и азеотропных (не изменяющих свой состав в процессе испарения) веществ изучено достаточно хорошо. Установлено, что рS зависит от температуры и может быть определено с помощью простой формулы:

(5)

где рST – давление насыщенных паров при температуре Т; рSTo – давление насыщенных паров при известной температуре То; k – эмпирический коэффициент. Давление рS паров индивидуальных углеводородов и нефтяных фракций можно определить, пользуясь различными графиками или например табл. 2.

Таблица 2

Давление насыщенных паров алканов (рАБС)

ºС Давление, МПа
С2Н5 С3Н8 i-С4Н16 С4Н10 i-С5Н10 C5Н10 С6Н14 С7Н16 С8Н18
-10 1,786 0,332 0,105 0,087 - - - - -
-5 2,040 0,392 0,125 0,082 0,041 - - - -
  2,308 0,448 0,150 0,100 0,033 0,023 0,003 - -
  2,502 0,332 0,179 0,121 0,051 0,029 - - -
  2,922 0,617 0,211 0,143 0,075 0,036 0,010 0,003 0,001
  3,253 0,711 0,247 0,171 0,062 0,046 0,012 0,004 -
  3,672 0,817 0,289 0,197 0,105 0,055 0,016 0,005 0,002
  4,051 0,934 0,334 0,238 0,089 0,066 0,020 0,005 -
  4,504 1,050 0,386 0,274 0,145 0,079 0,024 0,008 0,003
  4,795 1,204 0,443 0,318 0,125 0,084 - 0,010 -
  tкип 1,353 0,508 0,365 - 0,112 0,037 0,012 0,004
  - 1,527 0,579 0,420 0,171 0,131 0,040 0,015 -

 

Для смеси жидких углеводородов согласно закону Рауля давление насыщенных паров зависит от давления насыщенных паров отдельных компонентов и от мольных концентраций.

(6)

Парциальное давление рi любого компонента в жидкой смеси равно произведению давления насыщенного пара рSi чистого компонента на его мольную концентрацию хi в чистом виде, т.е. упругость паров жидкости равна сумме давлений компонентов этой смеси, которую они бы имели, если бы каждый занимал при данной температуре весь объем смеси, т.е. сумме парциальных давлений, или согласно закону Дальтона (1802 г.)

(7)

парциальное давление рi компонента, входящего в состав паровой фазы, равно произведению мольной концентрации компонента в паровой фазе на общее давление, т.е.

рi = рSyi. (8)

Таким образом, из уравнений (1.6÷1.7) имеем

хiрSi = рSyi. (9)

Уравнение (9) известно под названием объединенного закона Дальтона – Рауля, согласно которому можно сделать важный вывод – в состоянии равновесия парциальное давление любого компонента смеси в паровой фазе равно парциальному давлению того же компонента в жидкости.

Из приведенного уравнения следует, что

рSi/pS = yi/xi = ki = const

или

рSi = kpiрS и yi = kpixi. (10)

Коэффициент kрi, который называют константой равновесия, у отдельных компонентов зависит от температуры и давления и определяется, как правило, из специально составленных графиков. Приведенные уравнения позволяют, например, найти состав газовой фазы по известному составу жидкостей и наоборот.

Константы равновесия (в зарубежной литературе больше известны как константы фазового распределения) дают возможность прогнозировать материальный баланс многокомпонентных двухфазных систем (концентрации компонентов в разных фазах) при условии, если заданы давление и температура и известна также молярная концентрация i-го компонента в однофазном состоянии xi0.


Подготовка нефти к транспорту

 

Нефть поступает из недр земли по специально пробуренным до нефтяных продуктивных пластов эксплуатационным скважинам.

В процессе добычи вместе с нефтью поднимаются на поверхность различные механические примеси (частицы породы, цемента, который попадает в скважину из-за трубного пространства), вода и минеральные соли в виде кристаллов в нефти и раствора в воде.

Примерно 60-75% всей нефти добывается в обводненном состоянии. При извлечении смеси нефти с пластовой водой образуется эмульсия, которую следует рассматривать как механическую смесь двух нерастворимых жидкостей (нефти и воды). Содержание в нефти воды приводит к увеличению транспортных расходов в связи с возрастающими объемами перекачиваемой жидкости. Помимо этого увеличивается вязкость смеси и затрудняет переработку углеводородного сырья. Присутствием в нефти даже 0,1% воды приводит к интенсивному ее вспениванию в ректификационных колоннах, что нарушает технологию переработки.

Содержание в нефти водных растворов минеральных солей приводит к внутренней коррозии трубопроводов.

Наличие в нефти механических примесей помимо чрезвычайного износа оборудования затрудняет переработку нефти, повышает зольность мазутов и гудронов, образует отложения в холодильных печах и теплообменниках, что приводит к быстрому выходу из строя этого оборудования вследствие снижения коэффициента теплопередачи. Механические примеси являются причинами образования трудноразделимых эмульсий.

В пластовой нефти содержится большое количество легких фракций углеводородов, которые при снижении давления переходят в газовую фазу. Эту часть углеводородов называют нефтяным (попутным) газом, растворенным в нефти. Дегазация нефти при снижении давления – основная причина различия свойств нефти в поверхностных и пластовых условиях.

Попутный газ – это углеводороды от этана до пентана, - он является ценным сырьем, из которого получают спирты, синтетический каучук, растворители, жидкие моторные топлива, удобрения, и искусственное волокно и другие продукты органического синтеза. Поэтому следует стремиться исключить потери легких фракций.

Перед подачей в магистральный трубопровод следует произвести обезвоживание, обессоливание, дегазацию нефти и очистку от механических примесей.

Основным процессом, реализуемым при подготовке нефти к транспорту, является сепарация, в результате которой происходит разделение нефти, газа и воды. В условиях подготовки осуществляется обычно трехступенчатая сепарация.

Выбор оптимального числа ступеней сепарации

Выбор оптимального числа ступеней сепарации связан, вообще говоря, с довольно сложными расчетами при использовании констант равновесия, и поэтому здесь он не приводится. Однако, чтобы иметь представление о выборе оптимального числа ступеней сепарации, необходимо рассмотреть здесь два способа разгазирования нефти в бомбе pVT (давление, объем, температура) – дифференциальный и контактный – и показать, каким из них лучше всего пользоваться при решении этого вопроса. На рис. 1, а приведена схема многоступенчатой сепарации с условным выделением и отводом за пределы сепаратора смеси отдельных компонентов газа на каждой ступени, т. е. показано дифференциальное разгазирование нефти, характеризующееся постепенным снижением давления (p1, р2,..., рп), начиная от давления насыщения рн, когда весь газ в нефти растворен, а на рис. 1, б – одноступенчатое (контактное) разгазирование нефти, при котором происходит резкое понижение давления от рн до рп и одноразовый отвод из сепаратора всего выделившегося из нефти газа.

Условно показано также количество поступающей нефти на первую ступень сепарации (Gм) и количество выходящей нефти Gм на последней ступени сепаратора при дифференциальном и контактном разгазировании. Количество нефти, перешедшей на каждой ступени в газовую фазу, на схемах показано штриховкой. Анализ рисунков показывает, что при дифференциальном (многоступенчатом) разгазировании получается больше нефти (Gм = 98 т), чем при контактном (одноступенчатом) (Gм = 95 т) (см. рис. 1, а и б), а газа, наоборот – при дифференциальном меньше (кривая 2), чем при контактном (кривая 1) (см. рис. 1, в).

Объясняется это тем, что при дифференциальном разгазировании понижение давления в каждой ступени сепаратора происходит на незначительную величину, что влечет за собой плавное выделение небольших количеств сначала легких, а затем средних и тяжелых углеводородных газов и отвод смеси этих газов из каждой ступени за пределы сепаратора.

При этом практически все ступени сепараторов работают при равновесных условиях, характеризующихся равенством каждого легкого компонента углеводородного газа, находящегося в нефти и газовой фазе.

 

Рис. 1. Схемы многоступенчатой (дифференциальной) (а) одноступенчатой (контактной) (б) сепарации газа от нефти и количество газа, выделившегося при этих способах разгазирования (в): 1 – контактное; 2 – дифференциальное разгазирование нефти

 

При контактном разгазировании нефти в сепараторе происходит, наоборот, резкое снижение давления, в результате чего нефть «кипит», при этом бурно выделяются легкие углеводороды в газовую фазу, увлекая за собой большую массу тяжелых, которые при нормальных условиях (р=0,101 МПа и t=0 °С) являются жидкостями. Этим, собственно, и объясняется, что при контактном разгазировании получается меньше нефти, чем при дифференциальном (см. рис. 12.1, а, в).

Из этого следует такой вывод: если скважины фонтанируют и на их устьях поддерживаются давление насыщения рн или высокие давления (3—4 МПа), то целесообразно применять здесь многоступенчатую сепарацию (6—8 ступеней), обеспечивая больший конечный выход нефти, поступающей в парк товарных резервуаров. Во всех других случаях рекомендуется применять трехступенчатую сепарацию нефти от газа с давлениями: на первой ступени – 0,6 МПа, на второй – 0,15-0,25 МПа и на третьей – 0,02 МПа, а иногда даже вакуум. Третья ступень сепаратора – концевая является исключительно важной и ответственной, поскольку из нее нефть поступает в парк товарных резервуаров.

Согласно ГОСТу нефть в товарных резервуарах должна находиться с упругостью паров 0,06 МПа, что практически можно достигнуть только при горячей ступени сепарации или созданием на третьей ступени вакуума.



Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.069 с.