Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Установка гидроочистки керосина с применением высокотемпературной сепарации

2017-11-18 816
Установка гидроочистки керосина с применением высокотемпературной сепарации 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Установка, технологическая схема которой пред­ставлена на рис. V-5, проектировалась согласно первоисточнику * для понижения содержания серы в сырье — керосине —с 0,166 до менее 0,001 % (масс.). Пропускная способность установки по сырью 3975 мз/cyт, объем катализатора в реакторе 156 м3, внутренний диаметр реактора 3,81 м.

Сырье насосом 4 направляется через теплообмен­ники 8 и 6 в линию смешения его с предварительно нагретым в теплообменниках 12 и 5 водородсодержащим газом. Полученная газосырьевая смесь про ходит змеевики печи 3 и при давлении 4,2—4,4 МПа и температуре около 380 °С поступает в реактор 1 с неподвижным слоем катализатора. Выходящая из реактора снизу газопродуктовая смесь охлаждается последовательно в кипятильнике 18 и теплообмен­никах 5 и 6 и подается в сепаратор 9. Здесь, в высоко­температурном (горячем) сепараторе 9, смесь разде­ляется при давлении около 3,8 МПа на жидкую и газопаровую фазы. Жидкая фаза, представляющая собой гидроочищенный керосин с растворенными в нем газами и фракциями бензина (отгон), после сепаратора 9 подвергается физической стабилиза­ции в колонне 17.

 

Смесь газов и паров по выходе из сепаратора 9 (при высоком давлении) охлаждается в соединенных последовательно теплообменниках 1.2 и 16. Перед входом в теплообменник 12 в данную смесь впрыски­ваются конденсационная вода и раствор ингибитора коррозии, поскольку участок от теплообменника 12 и до конденсатора-холодильника 15 включительно наиболее подвержен коррозии кислым сульфитом ам­мония. Предпочтительно, чтобы на этом участке при температуре охлаждающегося потока ниже 177 °С скорость движения смеси не превышала 9 м/с. Поступающая из водяного конденсатора-холодильника 13 трехфазная смесь разделяется при давлении 3,7 МПа и температуре около 43 °С в низко­температурном (холодном) сепараторе 14. Отстоенный от воды углеводородный конденсат, состоящий преимущественно из бензиновых и легких керо­синовых фракций, по выходе из сепаратора 14 на­гревается в теплообменнике 16 и поступает в стаби­лизационную колонну 17.

Уходящий из сепаратора 14 водородсодержащий газ, пройдя приемник 11 с каплеотбойником, сжи­мается компрессором 10 примерно до 4,9 МПа и затем объединяется со свежим газом — техническим водородом. После нагрева в теплообменниках 12 и 5 смесь газов присоединяется к нагретому сырью, Из стабилизационной колонны 17 сверху уходят пары отгона и газы, а снизу — очищенный керосин. Режим работы колонны выдерживается таким, чтобы, получить продукт с нужной температурой вспышки. Температура низа этой колонны 267°С, давление 0,44 МПа. Перед теплообменником 12 в поток горя­чей газопаровой смеси впрыскиваются вода и раствор ингибитора, при этом температура смеси пони­жается до 205 °С. Далее смесь поступает в тепло­обменник 12. В горячем сепараторе 9 газопродукто­вая смесь разделяется при несколько более высокой температуре.

Режим работы установки:

 

Рабочие условия Температура, °С Избыточное давление, Мпа
Сырье при входе в теплообменник 8 Сырье при входе из теплообменника 5 Водородсодержащий газ перед смешением с сырьем Газосырьевая смесь: при входе в змеевики печи 3 при входе в реактор 1 в начале пробега в конце пробега при выходе из реактора 1 В сепараторе 9 Горячая газопаровая смесь при входе в теплообменник 12 Смесь - газы, углеводородный конденсат, вода - при входе в сепаратор 14 Гидроочищенный керосин при выходе из колонны 17 Смесь циркуляционного и свежего газов в нагнетательной линии после компрессора 10     - -   5,27 5,03 4,77   4,64   4,22 4,36 4,15 3,83 3,38 3,73 0,44   4,92

 

Примечания:

1. В системе циркуляции водородсодержащего газа общий перепад давления (после и до компрессора 10) составляет 1,19 МПа, что для данных установок не считается чрезмерным. Однако расход энергии на сжатие компрессором циркуляционного газа увеличивается с ростом гидравлического сопротивления системы и при проектировании вели­чина этого сопротивления должна быть найдена достаточно точно.

2. Гидравлическое сопротивление реактора в конце рабочего пробега существенно выше, чем в начале (0,21 и 0,07 МПа соответ­ственно).

3. При объединении нагретых потоков сырья и газа часть сырья. Переходит в парообразное состояние (испаряющим агентом является газ), на что затрачивается тепло, поэтому температура смеси пони­жается в данном случае приблизительно на 35 °С.

4. В наиболее высокотемпературных теплообменных аппаратах 5, б и 18 через трубное пространство проходит газопродуктовая;смесь, т. е. греющая среда, а через межтрубное — нагреваемая среда.

5. Температура газопродуктовой смеси при входе ее в сепаратор 9 поддерживается постоянной за счет изменения температуры сырья перед теплообменником 6: часть холодного сырья можно присоеди­нять, пользуясь обводной линией (пунктир на схеме), к предварительно подогретому сырью, выходящему из теплообменника 8.

6. Температура возвращаемого r нижнюю зону стабилизацион­ной колонны 17 продукта — рециркулята - регулируется изменением количества гпзоиродуктовой смеси, пропускаемой через кипятильник и являющейся в данном случае теплоносителем.

7. В расчете на 1 м2 поперечного сечения реактора приходится 14,6 м'/ч сырья (в пересчете на жидкое сырье).

8. Отсутствие на установке блока очистки циркуляционного газа от сероводорода объясняется, по-видимому, низким содержанием серы в очищаемом керосине.

 


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.