Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Основные методы изучения морфологии бактерий. Микроскопия и использование светового микроскопа. Методы микроскопии в световом микроскопе.

2017-10-07 694
Основные методы изучения морфологии бактерий. Микроскопия и использование светового микроскопа. Методы микроскопии в световом микроскопе. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

· микроскопический метод: световая, фазово-контрастная, флуоресцентная, электронная;

· культуральный метод (бактериологический, вирусологический);

· биологический метод (заражение лабораторных животных);

· молекулярно-генетический метод (ПЦР - полимеразная цепная реакция)

· серологический метод - выявления антигенов микроорганизмов или антител к ним;

 

Способы приготовления препаратов для микроскопии. При помощи светового микроскопа можно изучать микроорганизмы, как в живом, так и в окрашенном состоянии. При исследовании микробов в живом состоянии можно получить представление о размерах, форме и характере их движения. Иногда внутри живой клетки видны блестящие, сильно преломляющие свет гранулы и споры. Для изучения микробов в живом состоянии готовят препараты висячей и раздавленной капли. Для приготовления препарата висячей капли (рис. 19) бактериологической петлей в центр покровного стекла наносят небольшую каплю исследуемого материала, суспендированного в жидкости (изотонический раствор хлорида натрия, мясопептонный бульон). Затем берут специальное стекло с луночкой в центре и края ее смазывают вазелиновым маслом. Луночкой предметного стекла накрывают каплю исследуемого материала на покровном стекле так, чтобы капля находилась в центре луночки. Слегка прижимают предметное стекло и быстро переворачивают. При правильном приготовлении препарата капля свисает в луночку. Вазелиновое масло предохраняет ее от высыхания.

Препарат раздавленной капли готовят нанесением капли суспендированного в жидкости материала на предметное стекло, которое затем накрывают покровным.

СВЕТООПТИЧЕСКАЯ МИКРОСКОПИЯ

Для световой микроскопии применяют микроскоп — оптический прибор, позволяющий наблюдать мелкие объекты. Увеличение изображения достигают системой линз конденсора, объектива и окуляра. Конденсор, расположенный между источником света и изучаемым объектом, собирает лучи света в поле микроскопа. Объектив создаёт изображение поля микроскопа внутри тубуса. Окуляр увеличивает это изображение и делает возможным его восприятие глазом. Предел разрешения микроскопа (минимальное расстояние, на котором различимы два объекта) определяется длиной световой волны и апертурой линз. Теоретически возможный предел разрешения светового микроскопа равен 0,2 мкм; реальное разрешение можно повысить за счёт увеличения апертуры оптической системы, например путём увеличения коэффициента преломления. Коэффициент преломления (иммерсии) жидких сред больше коэффициента преломления воздуха («=1,0), при микроскопировании применяют несколько иммерсионных сред: масляную, глицериновую, водную. Механическая часть микроскопа включает штатив, предметный столик, макро- и микрометрический винты, тубус, тубусодержатель.

Темнопольная микроскопия позволяет наблюдать живые бактерии. Для этого используют темнопольный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Перед началом работы свет устанавливают и центрируют по светлому полю, затем светлопольный конденсор удаляют и заменяют соответствующей системой (например, ОИ-10 или ОИ-21). Препарат готовят по методу «раздавленной капли», делая его как можно более тонким (толщина покровного стекла не должна быть толще 1 мм). Наблюдаемый объект выглядит как освещенный на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. В качестве иммерсионной жидкости пригодно вазелиновое масло.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты за счёт повышения их контрастности. При прохождении света через окрашенные объекты происходит изменение амплитуды световой волны, а при прохождении через неокрашенные — фазы световой волны, что используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. Для повышения контрастности фазовые кольца покрывают металлом, поглощающим прямой свет, не влияя на сдвиг фазы. В оптической системе микроскопа применяют специальный конденсор с револьвером диафрагм и центрирующим устройством; объективы заменяют на иммерсионные объективы-апохроматы.

Поляризационная микроскопия позволяет получать изображения неокрашенных анизотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганизмов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях.

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии. Метод применяют для получения контрастного трёхмерного изображения неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микроскопе; один луч проходит через объект, другой — мимо него. Оба луча соединяются в окуляре и интерферируют между собой.

Люминесцентная микроскопия. Метод основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра. Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюорохромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта.

 


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.