Процесс питания у бактерий. Типы питания. Работы С.Н.Виноградского. — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Процесс питания у бактерий. Типы питания. Работы С.Н.Виноградского.

2017-10-07 908
Процесс питания у бактерий. Типы питания. Работы С.Н.Виноградского. 0.00 из 5.00 0 оценок
Заказать работу

Пищей принято называть любое вещество, которое, попав в организм, служит источником энергии или пластическим материалом для синтеза молекул, используемых для нужд организма. Большинство животных, включая человека, способно заглатывать и переваривать плотные частички пищи в основном за счёт их гидролиза. Подобный тип питания известен как голозойный, а организмы — голозои [от греч. hobs, полноценный, + zoikos, относящийся к животным].

Бактерии не способны захватывать твердофазные объекты, поэтому утилизируют питательные вещества в виде относительно простых молекул из водных растворов. Подобный тип питания, присущий также всем растениям, известен как голофитный, то есть бактерии — голофиты [от греч. hobs, полноценный, + phytikos, относящийся к растениям]. Тем не менее многие бактерии способны утилизировать твёрдую пищу с помощью так называемого внешнего питания, реализуемого вне клеток, то есть бактериям также присущ и голозойный тип питания. Для этого они имеют мощный ферментативный потенциал, хотя иногда секретируемые ферменты могут полностью инактивироваться в результате разведения, под действием конвеционных токов и других факторов. Контакт пищеварительных ферментов с экзогенным субстратом приводит к образованию низкомолекулярных продуктов, проникающих через клеточную стенку в цитоплазму. Начиная с этого момента, процессы их усвоения (метаболизма) в растительных и животных клетках протекают удивительно сходно.

Вода. Значимость воды для бактерий. Вода составляет около 80% массы бактерий. Рост и развитие бактерий облигатно зависят от наличия воды, так как все химические реакции, протекающие в живых организмах, реализуются в водной среде. Для нормального роста и развития микроорганизмов необходимо присутствие воды в окружающей среде. Для бактерий содержание воды в субстрате должно быть более 20%. Вода должна находиться в доступной форме: в жидкой фазе в интервале температур от 2 до 60 °С; этот интервал известен как биокинетическая зона. Хотя в химическом отношении вода весьма устойчива, продукты её ионизации — ионы Н+ и ОН" оказывают очень большое влияние на свойства практически всех компонентов клетки (белков, нуклеиновых кислит, липидов и т.д.). Так, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН".

Усваиваемые бактериальной клеткой соединения. Основные соединения, усваиваемые бактериальной клеткой, — углеводы, аминокислоты, органические кислоты, жирные кислоты, минеральные вещества, витамины и др. Бактериям совершенно безразличны источники питательных веществ; образно говоря, они «лишены вкуса и не страдают несварением желудка». Более того, бактерии иногда утилизируют вещества, не пригодные для животных клеток (например, карболовую кислоту, парафин, мыло и др.). Подобно прочим формам жизни, бактерии нуждаются в одних и тех же макроэлементах — С, Н, О, N, P, S, К, Са, Mg, Fe. Микроэлементы (следовые элементы) — Mn, Mo, Zn, Си, Со, Ni, Va, В, С], Na, Se, Si, Wo — не нужны каждому организму, но бактериям они необходимы для синтеза коферментов либо поддержания специфического тина метаболизма. Например, для оптимального роста некоторые бактерии нуждаются в высоких концентрациях Na+; их называют галофилами [от греч. hals, соль]. Помимо источников углерода, энергии и элементов минерального питания, многие микроорганизмы нуждаются в некоторых дополнительных веществах, называемых факторами роста. Количественная потребность в питательных элементах и их содержание у различных бактерий варьируют, но принципиально химический состав бактериальной клетки сходен с другими живыми клетками (исключением является отсутствие у бактерий стеролов).

Пути поступления веществ в бактериальную клетку Для того чтобы питательные вещества могли подвергнуться соответствующим превращениям в клетке, они прежде всего должны в неё проникнуть. Но большинство бактерий обитает в условиях, мало пригодных для поддержания строгих соотношений воды, неорганических и органических веществ, без которых их жизнь просто невозможна. Клеточная стенка бактерий не. является существенным барьером для небольших молекул и ионов, но задерживает макромолекулы. Истинный барьер, обеспечивающий избирательное поступление веществ в клетку, — ЦПМ. Она проницаема для одних веществ и непроницаема для других. Потоки веществ движутся в обоих направлениях (внутрь и наружу). Эти перемещения обеспечивают разнообразные транспортные системы, необходимые для выполнения двух важнейших задач. 1. Обеспечение адекватных концентраций веществ, участвующих в основных биохимических реакциях, в том числе и обеспечение, при необходимости, их быстрого поступления внутрь клетки, невзирая на концентрацию этих веществ в окружающей среде. 2. Поддержание осмотического давления, оптимального для протекания биохимических реакций. Поступление различных веществ внутрь бактериальной клетки реализуют три механизма: пассивный перенос, активный перенос и транспорт, обусловленный фосфорилированисм.

Пассивный перенос веществ в бактериальную клетку Многие вещества способны неспецифически проникать в бактериальную клетку за счёт различия их концентраций по обе стороны ЦПМ. При этом они поступают в клетку только до выравнивания градиента концентрации с внешним раствором. Такое поступление веществ происходит пассивно, без прямых энергетических затрат. Существует два вида пассивной диффузии: простая и облегчённая.

Простая диффузия. Проникновение веществ носит неспецифический характер и целиком зависит от размеров молекул и их липофильности. Скорость подобного переноса незначительна.

Облегчённая диффузия. Механизм транспорта носит аналогичный характер, но проникновение облегчают помощники — специфические мембранные белки-пермеазы, способствующие прохождению различных молекул через ЦПМ. Транспорт сопровождается образованием комплекса «вещество-пермеаза». После преодоления ЦПМ комплекс диссоциирует, а перме-аза используется для последующего «проведения» других молекул. Подобный тип транспорта реализуется по градиенту концентрации и характерен для эукариотов при поглощении Сахаров. У прокариотов единственный пример облегчённой диффузии — проникновение глицерина в клетки бактерий кишечной группы. При этом концентрация проникшего глицерина практически равна его концентрации в окружающей среде. В последующем (в результате реакций фосфорилирования) глицерин трансформируется в глицерин-3-фосфат.

Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки. Концентрация некоторых веществ в бактериальной клетке может в сотни раз превышать их содержание в окружающей среде. Транспорт таких веществ в клетку происходит против градиента концентрации перемещаемого вещества, требует затрат энергии и реализуется при помощи специфических переносчиков. Например, в случае активного транспорта, как и при облегчённой диффузии, перемещение конкретного вещества через ЦПМ осуществляет специфическая для такого вещества пермеаза. Активный транспорт сопровождается увеличением свободной энергии, которая составляет 5,71 /gC2/C1 кДж на моль, где С2 и C1 — соответственно более высокая и более низкая концентрации. Это обстоятельство делает процесс активного транспорта энергозависимым. У бактерий подобный тип поступления веществ доминирует, с его помощью транспортируются многие сахара, белки и другие вещества. Нередко у грамотрицательных бактерий в активном переносе участвуют специальные белки, отличные от пермеаз, но действующие в ассоциации с ними. Эти белки локализованы в периплазматическом пространстве. После проникновения вещества в клетку комплекс «субстрат — белок периплазмы — пермеаза» диссоциирует и для попавшего в клетку вещества вероятность выхода наружу резко снижается.

Примером активного транспорта служит концентрирование лактозы в клетках кишечной палочки. Эта система известна как р-галактозидпермеазная система. Энергия используется для снижения сродства пермеазы к лактозе на внутренней стороне ЦПМ по сравнению с ее сродством к тому же субстрату на внешней. В результате скорость выхода вещества наружу становится меньше, чем скорость его поступления внутрь клетки, и концентрация лактозы в клетке возрастает. Если блокировать образование энергии, то р-галактозидпермеазная система теряет способность осуществлять активный транспорт и переключается на облегчённую диффузию, обнаруживая одинаковое сродство к В-галактозидам по обе стороны мембраны.

Транспорт, обусловленный фосфорилированием Транспорт веществ обусловленный фосфорилированием Транспорт, обусловленный фосфорилированием — энергозависимый процесс, используемый при утилизации углеводов. Основной механизм транспорта связан с фосфорилированием субстрата, что делает невозможным его выход из клетки. Первоначально происходит фосфори-лирование мембранного фермента (так называемый фермент 2, или Ф2) в цитоплазме за счёт фосфоенолпирувата. Фосфорилированный фермент связывает углевод (например, глюкозу или маннозу) на поверхности ЦПМ и транспортирует его в цитоплазму. Затем комплекс диссоциирует с высвобождением углевода, связанного с фосфатной группой. За счёт фосфорилирова-ния углевод аккумулируется в клетке и не способен выходить из неё. Данный тип транспорта не рассматривают как активный, поскольку концентрация неизменённого питательного вещества внутри клетки может быть одинаковой с его внеклеточным содержанием. Но в целом этот процесс напоминает активный транспорт против градиента концентрации вещества, так как концентрация химически изменённого питательного соединения внутри клетки может значительно превышать концентрацию неизменённого соединения в среде.

Выделение веществ из бактериальной клетки Бактерии секретируют широкий спектр БАБ — ферменты, токсины, антибиотики и др. Некоторые соединения секретируются в окружающую среду непосредственно через ЦПМ, другие (обычно белки) первоначально попадают в периплазматическую полость в виде предшественников. Предшественник содержит сигнальный пептид, с помощью которого молекула белка проходит во внешнюю среду. На поверхности ЦПМ сигнальная пептидаза отщепляет сигнальный пептид, и этим завершает превращение внутриклеточного предшественника в зрелый сек-ретируемый белок. Процессы выделения в среду определённых соединений из бактериальной клетки нельзя рассматривать как выброс «шлаков»: это скорее механизмы адаптации микроорганизмов к условиям внешней среды, которые требуют конкурентной борьбы либо использования особых полимерных субстратов. В первом случае продукция антибиотиков даёт преимущество штамму-продуценту по сравнению с другими микроорганизмами, во втором — секреция гидролаз позволяет утилизировать труднодоступный субстрат, что обеспечивает их продуцентам успех в борьбе за источники питания в данной экологической нише.

Виноградский С.Н. - работы в области общей и почвенной микробиологии. Он выяснил участие микроорганизмов в круговороте веществ в природе. Впервые (1889) ввел в микробиологическую практику элективные (избирательные) питательные среды, которые создавали условия для размножения определенного вида микроба. Так, засевая пробу почвы в питательную среду, не содержащую азота, Виноградский впервые (1893) получил культуру анаэробной спороносной бактерии Clostridium Pasteurianum, усваивающей атмосферный азот. Ему принадлежит открытие явления хемосинтеза и описание важнейших групп хемосинтезирующих бактерий. Еще в 1887 открыл существование совершенно особой группы микробов, способных окислять неорганические соединения и использовать образующуюся при этом энергию на усвоение углекислоты, содержащейся в воздухе, что дает возможность микроорганизмам развиваться в средах, не содержащих органических веществ ("О серобактериях", 1887). К хемосинтезирующим микроорганизмам относятся: серобактерии, окисляющие серу; нитрифицирующие бактерии, окисляющие аммиак в нитриты, а затем в нитраты; железобактерии, переводящие закисные соединения железа в окисные, и др. Открытие хемосинтеза — наиболее крупное событие в области физиологии растений последней четверти 19 в. Ему принадлежит также серия работ по микробиологии почвы. В них описаны новые методы изучения почвенной микрофлоры, в частности метод прямого подсчета клеток почвенных микробов, окрашенных в препаратах. Применение этого метода помогло выяснить, что в почве содержится гораздо больше микроорганизмов, чем считалось раньше. К этим работам относятся также исследования Виноградского по физиологии аэробной азотфиксирующей бактерии — азотобактера, по аэробным целлюлозным бактериям и др. Одним из первых указал на необходимость изучать микроорганизмы в условиях их естественного местообитания и неоднократно подчеркивал важность дальнейшего развития экологической микробиологии.

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.