Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

ДНК. Строение и функции. Явление авторепродукции (репликация) ДНК. Ферменты, участвующие в репликации. Биологическое значение.

2017-05-20 1604
ДНК. Строение и функции. Явление авторепродукции (репликация) ДНК. Ферменты, участвующие в репликации. Биологическое значение. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

В 1870 году биохимик И.Мишер описал в ядре макромолекулы и дал им название нуклеиновые кислоты (от лат. nucleus – ядро). Это были ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота).

​Структура молекулы ДНК была расшифрована в 1953г. Дж.Уотсоном, Ф.Криком и М.Уилкинсом. Они назвали ее «нить жизни».

​Нуклеиновые кислоты являются полимерами. Их мономеры – нуклеотиды. Нуклеотид содержит азотистое основание, сахар дезоксирибозу или рибозу и остаток фосфорной кислоты. Азотистых оснований 5 типов: аденин, гуанин, цитозин, тимин, урацил. Нуклеотиды ДНК содержат аденин, гуанин, цитозин, тимин. Нуклеотиды РНК содержат аденин, гуанин, цитозин, урацил. Азотистые основания обозначаются первыми буквами: А, Г – пуриновые; Т, Ц, У – пиримидиновые.

​Молекула ДНК состоит из двух спиралей. Цепочка нуклеотидов оединяется ковалентными фосфодиэфирными связями между дезоксирибозой одного и остатком фосфорной кислоты другого нуклеотида. Внутри спирали находятся соединенные по принципу комплементарности (взаимодополняемости) азотистые основания: А –Т – две водородные связи Г – Ц – три водородные связи (рис.13).

Свойство комплементарности азотистых оснований выражается в правилах Чаргаффа:

​- количество пуриновых оснований равно количеству пиримидиновых оснований: А + Г = Ц + Т;

​- количество аденина равно количеству тимина (А = Т), количество гуанина равно количеству цитозина (Г = Ц).

​ДНК находится в клетке в ядре, в митохондриях и пластидах.

​Свойства ДНК: репликация (самовоспроизведение) и способность к репарации (восстановление структуры после нарушений молекулы).

Механизмы синтеза ДНК хорошо изучены в клетках бактерий, однако имеются доказательства, что в клетках эукариот процесс протекает аналогичным образом.
Инициация репликации ДНК. Репликация начинается в специфическом участке молекулы ДНК, который называется точка начала репликации или ориджин.
Точка начала репликации (origin) – это участок молекулы ДНК со специфической последовательностью нуклеотидов с большим содержанием пар АТ (последовательность 300 п.н., богата АТ). Специальные инициирующие белки необходимы для связывания ферментов репликации с молекулой ДНК: белок DnaA – для прокариот белок RPA (replication protein A) – для эукриот.

Кольцевая хромосома прокариот имеет одну точку начала репликации, которая

называется OriC. В этой точке цепи расходятся и образуются две репликативные вилки, которые движутся в противоположном направлении. Скорость синтеза ДНК в клетках прокариот составляет 500 нукл./сек. Две вилки встречаются на противоположной стороне кольца. В клетках прокариот существует специальный фермент гираза (топоизомераза II), который разделяет две образующиеся кольцевые молекулы ДНК. Антибиотик налидиксовая кислота угнетает размножение бактерий, путем инактивации гиразы.

В клетках эукариот этот фермент отсутствует, поэтому налидиксовую кислоту используют в клинической практике для лечения бактериальных инфекций.

Репликация ДНК эукариот начинается одновременно во многих точках начала репликации, от каждой точки движутся две репликативные вилки в противоположных направлениях. Скорость синтеза молекул ДНК эукариот составляет 50 нукл./сек.
Репликон – фрагмент молекулы ДНК, репликация которого происходит под контролем одной точки начала репликации. Кольцевая хромосома прокариот имеет 1 репликон. Геномы эукариот содержат сотни и тысячи репликонов.
Инициация -образование репликативной вилки. Нити ДНК разделяются благодаря действию специальных ферментов и белков.
Хеликаза ( от англ. helix – спираль) - основной фермент, расплетающий цепи ДНК. У прокариот он называется белок DnaB. Хеликаза разрывает водородные связи между комплементарными основаниями, используя энергию АТФ.
Топоизомеразы ферменты, которые устраняют положительные сверхвитки перед репликативной вилкой. Эти ферменты временно разрывают нити материнской ДНК в двойной спирали перед репликативной вилкой, после завершения процесса нити ДНК восстанавливают целостность.
SSB - белки – это белки, которые связываются с одноцепочечной ДНК и удерживают матрицу. В результате образуется репликативная вилка, где и происходит синтез новых цепей ДНК.

Ферменты, катализирующие процесс синтеза новых цепей ДНК, называются ДНК-зависисмые ДНК-полимеразы. В клетках бактерий существует три типа ДНК-полимераз: ДНК-полимераза I, II, III.
Синтез ДНК в репликативной вилке катализирует ДНК-полимераза III. ДНК-полимераза I играет важную роль в синтезе отстающей цепи и репарации ДНК. ДНК-полимераза II участвует в репарации ДНК.
Реакция синтеза. ДНК-полимеразы могут только удлинять (элонгировать) уже существующую полинуклеотидную нить, которую называют затравкой или праймером. В клетках роль затравки играет олигонуклеотид РНК (РНК-праймер), который комплементарен матрице и образует с ней двухспиральный комплекс матрица-затравка. Синтез РНК праймера осуществляет фермент праймаза. Затем ДНК-полимераза синтезирует цепь ДНК, используя 3’-OH конец праймера. После окончания синтеза ДНК РНК-праймеры удаляются с помощью ферментов – экзонуклеаз.

ДНК-полимераза имеет 2 субстрата:

Комплекс матрица – затравка и дезоксинуклеозидтрифосфаты (АТФ, ГТФ,ЦТФ и ТТФ). Реакция осуществляется как удлинение цепи с 3’- конца затравки. Необходимы ионы Mg 2+ (3’ – OH) конец полинуклеотидной цепи атакует α-фосфат дНТФ, образуя фосфодиэфирную связь. Матрица копируется точно на основе принципа комплементарности.

Кроме полимеризующей активности, ДНК-полимеразы обладают корректирующей активностью: они дважды проверяют нуклеотид, который добавляют в растущую цепь ДНК. Корректирующая активность ДНК-полимераз проявляется в способности отщеплять нуклеотид, некомплементарный матрице, и замещать его комплеметарным нуклеотидом.
Асимметричность репликативной вилки. Поскольку ДНК-полимераза наращивает цепь ДНК в направлении 5’ → 3’, синтез дочерних цепей идет в противоположном направлении. Одна цепь синтезируется непрерывно (лидирующая), а другая синтезируется прерывисто, в виде фрагментов Оказаки (отстающая). Фрагменты Оказаки – это короткие цепочки ДНК вместе с РНК-праймерами, расположенные на отстающей цепи.
Синтез отстающей цепи. ДНК-полимераза III останавливается перед РНК-праймером предшествующего фрагмента Оказаки. Здесь подключается ДНК-полимераза I, которая удаляет РНК-праймеры предшествующего фрагмента Оказаки и одновременно наращивает 3’-OH – конец растущей цепи ДНК, заполняя образующуюся брешь. Фермент лигаза соединяет два фрагмента Оказаки, используя АТФ. Таким образом, на отстающей цепи также синтезируется непрерывная цепь ДНК.
Функции теломераз.
Проблема недорепликации 3’-концов линейных молекул ДНК заключается в том, что удаление последних РНК-праймеров с 5’-концов обеих цепей дочерней ДНК, приводит к тому, что дочерние цепи оказываются короче материнской на 10-20 нуклеотидов (у организмов разных видов размер РНК-праймеров различен). Проблема недорепликации 3’-концов линейных молекул ДНК эукариот решается с помощью специального фермента – теломеразы.
В случае репликации кольцевых молекул ДНК этой проблемы не существует, т.к. первые РНК-затравки удаляются ДНК-полимеразой I, которая одновременно наращивает 3’-OH – конец растущей цепи ДНК и заполняет образующуюся брешь.
Фермент теломераза впервые был обнаружен в 1985 году у равноресничной инфузории Tetrahymena thermophila, а позже – в клетках дрожжей, растений и животных, в том числе в яичниках человека и иммортализованных (бессмертных) линиях раковых клеток HeLa.
Согласно номенклатуре этот фермент называют теломерной терминальной трансферазой. Теломераза выполняет функции ДНК-полимеразы, которая достраивает 3’-концы линейных молекул ДНК короткими повторяющимися последовательностями нуклеотидов (у позвоночных – ТТАГГГ) в отсутствии ДНК матрицы. В качестве матрицы для синтеза цепи ДНК теломераза использует молекулу РНК, которая является составной частью этого фермента.
Механизм действия теломеразы. В результате того, что после каждой репликации дочерние цепи ДНК оказываются короче материнских на размер первого РНК-праймера (10-20 нуклеотидов), образуются выступающие однонитевые 3’-концы материнских цепей. Они узнаются теломеразой, которая последовательно наращивает материнские цепи на сотни повторов ТТАГГГ, используя 3’- конец материнской цепи ДНК в качестве праймера, а входящую в состав фермента молекулу РНК использует в качестве матрицы. Образующиеся длинные однонитевые концы материнской ДНК в свою очередь служат матрицей для синтеза дочерних цепей по традиционному механизму

Биологический смысл репликации – сохранение и точная (неискажённая) передача генетической информации в ряду поколений клеток и организмов, а также при воспроизведении ДНК-содержащих структур (митохондрий, пластид, некоторых вирусов). Поэтому репликация всегда предшествует делению ядер у эукариотических клеток, делению клеток бактерий, размножению вирусов и т. п.


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.